2023-10-18 06:35:50 +00:00
|
|
|
import torch
|
|
|
|
import network
|
2023-11-02 05:34:27 +00:00
|
|
|
from einops import rearrange
|
2023-11-02 07:13:11 +00:00
|
|
|
from modules import devices
|
2023-10-18 06:35:50 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ModuleTypeOFT(network.ModuleType):
|
|
|
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
2023-11-02 07:13:11 +00:00
|
|
|
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
|
2023-10-18 06:35:50 +00:00
|
|
|
return NetworkModuleOFT(net, weights)
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
2023-10-19 19:41:17 +00:00
|
|
|
# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
2023-10-18 06:35:50 +00:00
|
|
|
class NetworkModuleOFT(network.NetworkModule):
|
|
|
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
2023-10-18 11:16:01 +00:00
|
|
|
|
2023-10-18 06:35:50 +00:00
|
|
|
super().__init__(net, weights)
|
|
|
|
|
2023-11-02 07:13:11 +00:00
|
|
|
self.lin_module = None
|
|
|
|
# kohya-ss
|
|
|
|
if "oft_blocks" in weights.w.keys():
|
|
|
|
self.is_kohya = True
|
|
|
|
self.oft_blocks = weights.w["oft_blocks"]
|
|
|
|
self.alpha = weights.w["alpha"]
|
|
|
|
self.dim = self.oft_blocks.shape[0]
|
|
|
|
elif "oft_diag" in weights.w.keys():
|
|
|
|
self.is_kohya = False
|
|
|
|
self.oft_blocks = weights.w["oft_diag"]
|
|
|
|
# alpha is rank if alpha is 0 or None
|
|
|
|
if self.alpha is None:
|
|
|
|
pass
|
|
|
|
self.dim = self.oft_blocks.shape[0] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
|
|
|
|
else:
|
|
|
|
raise ValueError("oft_blocks or oft_diag must be in weights dict")
|
|
|
|
|
|
|
|
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
|
|
|
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
|
|
|
is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
|
|
|
|
#if "Linear" in self.sd_module.__class__.__name__ or is_linear:
|
|
|
|
if is_linear:
|
2023-10-18 06:35:50 +00:00
|
|
|
self.out_dim = self.sd_module.out_features
|
2023-11-02 07:13:11 +00:00
|
|
|
#elif hasattr(self.sd_module, "embed_dim"):
|
|
|
|
# self.out_dim = self.sd_module.embed_dim
|
|
|
|
#else:
|
|
|
|
# raise ValueError("Linear sd_module must have out_features or embed_dim")
|
|
|
|
elif is_other_linear:
|
|
|
|
self.out_dim = self.sd_module.embed_dim
|
|
|
|
elif is_conv:
|
2023-10-18 06:35:50 +00:00
|
|
|
self.out_dim = self.sd_module.out_channels
|
2023-11-02 07:13:11 +00:00
|
|
|
else:
|
|
|
|
raise ValueError("sd_module must be Linear or Conv")
|
|
|
|
|
2023-10-18 06:35:50 +00:00
|
|
|
|
2023-11-02 07:13:11 +00:00
|
|
|
if self.is_kohya:
|
|
|
|
self.num_blocks = self.dim
|
|
|
|
self.block_size = self.out_dim // self.num_blocks
|
|
|
|
self.constraint = self.alpha * self.out_dim
|
|
|
|
#elif is_linear or is_conv:
|
|
|
|
else:
|
|
|
|
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
|
|
|
|
self.constraint = None
|
2023-10-18 06:35:50 +00:00
|
|
|
|
2023-10-18 11:16:01 +00:00
|
|
|
self.org_module: list[torch.Module] = [self.sd_module]
|
2023-10-21 23:07:45 +00:00
|
|
|
|
2023-11-02 07:13:11 +00:00
|
|
|
# if is_other_linear:
|
|
|
|
# weight = self.oft_blocks.reshape(self.oft_blocks.shape[0], -1)
|
|
|
|
# module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
|
|
|
# with torch.no_grad():
|
|
|
|
# if weight.shape != module.weight.shape:
|
|
|
|
# weight = weight.reshape(module.weight.shape)
|
|
|
|
# module.weight.copy_(weight)
|
|
|
|
# module.to(device=devices.cpu, dtype=devices.dtype)
|
|
|
|
# module.weight.requires_grad_(False)
|
|
|
|
# self.lin_module = module
|
|
|
|
#return module
|
|
|
|
|
|
|
|
def merge_weight(self, R_weight, org_weight):
|
|
|
|
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
|
|
|
if org_weight.dim() == 4:
|
|
|
|
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
|
|
|
else:
|
|
|
|
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
|
|
|
#weight = torch.einsum(
|
|
|
|
# "k n m, k n ... -> k m ...",
|
|
|
|
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
|
|
|
|
# org_weight
|
|
|
|
#)
|
|
|
|
return weight
|
2023-10-21 23:07:45 +00:00
|
|
|
|
2023-10-19 19:41:17 +00:00
|
|
|
def get_weight(self, oft_blocks, multiplier=None):
|
2023-11-02 07:13:11 +00:00
|
|
|
if self.constraint is not None:
|
|
|
|
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
2023-10-22 15:54:24 +00:00
|
|
|
|
2023-11-02 07:13:11 +00:00
|
|
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
|
|
|
norm_Q = torch.norm(block_Q.flatten())
|
|
|
|
if self.constraint is not None:
|
|
|
|
new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
|
|
|
else:
|
|
|
|
new_norm_Q = norm_Q
|
|
|
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
|
|
|
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
|
|
|
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
2023-10-22 15:54:24 +00:00
|
|
|
|
2023-11-02 07:13:11 +00:00
|
|
|
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
|
|
|
R = torch.block_diag(*block_R_weighted)
|
|
|
|
return R
|
|
|
|
#return self.oft_blocks
|
2023-10-18 06:35:50 +00:00
|
|
|
|
|
|
|
|
|
|
|
def calc_updown(self, orig_weight):
|
2023-10-22 16:27:48 +00:00
|
|
|
multiplier = self.multiplier() * self.calc_scale()
|
2023-11-02 07:13:11 +00:00
|
|
|
R = self.get_weight(self.oft_blocks, multiplier)
|
|
|
|
#R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
merged_weight = self.merge_weight(R, orig_weight)
|
|
|
|
|
|
|
|
#if self.lin_module is not None:
|
|
|
|
# R = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
# weight = torch.mul(torch.mul(R, multiplier), orig_weight)
|
|
|
|
#else:
|
|
|
|
# orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
|
|
|
# weight = torch.einsum(
|
|
|
|
# 'k n m, k n ... -> k m ...',
|
|
|
|
# R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
|
|
|
|
# orig_weight
|
|
|
|
# )
|
|
|
|
# weight = rearrange(weight, 'k m ... -> (k m) ...')
|
|
|
|
|
|
|
|
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
|
|
|
#updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
2023-10-21 21:42:24 +00:00
|
|
|
output_shape = orig_weight.shape
|
2023-10-22 15:54:24 +00:00
|
|
|
orig_weight = orig_weight
|
2023-10-18 11:27:44 +00:00
|
|
|
|
2023-10-18 06:35:50 +00:00
|
|
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
2023-10-22 16:31:15 +00:00
|
|
|
|
2023-10-22 16:27:48 +00:00
|
|
|
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
|
|
|
|
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
|
|
|
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
|
|
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
updown = updown.reshape(self.bias.shape)
|
|
|
|
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
updown = updown.reshape(output_shape)
|
|
|
|
|
|
|
|
if len(output_shape) == 4:
|
|
|
|
updown = updown.reshape(output_shape)
|
|
|
|
|
|
|
|
if orig_weight.size().numel() == updown.size().numel():
|
|
|
|
updown = updown.reshape(orig_weight.shape)
|
|
|
|
|
|
|
|
if ex_bias is not None:
|
|
|
|
ex_bias = ex_bias * self.multiplier()
|
|
|
|
|
|
|
|
return updown, ex_bias
|
2023-11-02 07:13:11 +00:00
|
|
|
|
|
|
|
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
|
|
|
|
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
|
|
|
|
'''
|
|
|
|
return a tuple of two value of input dimension decomposed by the number closest to factor
|
|
|
|
second value is higher or equal than first value.
|
|
|
|
|
|
|
|
In LoRA with Kroneckor Product, first value is a value for weight scale.
|
|
|
|
secon value is a value for weight.
|
|
|
|
|
|
|
|
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
|
|
|
|
|
|
|
|
examples)
|
|
|
|
factor
|
|
|
|
-1 2 4 8 16 ...
|
|
|
|
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
|
|
|
|
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
|
|
|
|
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
|
|
|
|
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
|
|
|
|
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
|
|
|
|
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
|
|
|
|
'''
|
|
|
|
|
|
|
|
if factor > 0 and (dimension % factor) == 0:
|
|
|
|
m = factor
|
|
|
|
n = dimension // factor
|
|
|
|
if m > n:
|
|
|
|
n, m = m, n
|
|
|
|
return m, n
|
|
|
|
if factor < 0:
|
|
|
|
factor = dimension
|
|
|
|
m, n = 1, dimension
|
|
|
|
length = m + n
|
|
|
|
while m<n:
|
|
|
|
new_m = m + 1
|
|
|
|
while dimension%new_m != 0:
|
|
|
|
new_m += 1
|
|
|
|
new_n = dimension // new_m
|
|
|
|
if new_m + new_n > length or new_m>factor:
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
m, n = new_m, new_n
|
|
|
|
if m > n:
|
|
|
|
n, m = m, n
|
|
|
|
return m, n
|
|
|
|
|