diff --git a/modules/models/diffusion/uni_pc/sampler.py b/modules/models/diffusion/uni_pc/sampler.py index bf346ff48..a241c8a7c 100644 --- a/modules/models/diffusion/uni_pc/sampler.py +++ b/modules/models/diffusion/uni_pc/sampler.py @@ -71,7 +71,7 @@ class UniPCSampler(object): # sampling C, H, W = shape size = (batch_size, C, H, W) - print(f'Data shape for UniPC sampling is {size}') + # print(f'Data shape for UniPC sampling is {size}') device = self.model.betas.device if x_T is None: diff --git a/modules/models/diffusion/uni_pc/uni_pc.py b/modules/models/diffusion/uni_pc/uni_pc.py index e9a093a2b..eb5f4e762 100644 --- a/modules/models/diffusion/uni_pc/uni_pc.py +++ b/modules/models/diffusion/uni_pc/uni_pc.py @@ -1,6 +1,7 @@ import torch import torch.nn.functional as F import math +from tqdm.auto import trange class NoiseScheduleVP: @@ -750,7 +751,7 @@ class UniPC: if method == 'multistep': assert steps >= order, "UniPC order must be < sampling steps" timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) - print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}") + #print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}") assert timesteps.shape[0] - 1 == steps with torch.no_grad(): vec_t = timesteps[0].expand((x.shape[0])) @@ -766,7 +767,7 @@ class UniPC: self.after_update(x, model_x) model_prev_list.append(model_x) t_prev_list.append(vec_t) - for step in range(order, steps + 1): + for step in trange(order, steps + 1): vec_t = timesteps[step].expand(x.shape[0]) if lower_order_final: step_order = min(order, steps + 1 - step)