From 18ca987c92f52690daec43a6c67363c341bb6008 Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Fri, 5 Jan 2024 16:32:19 +0800 Subject: [PATCH] Add general forward method for all modules. --- extensions-builtin/Lora/network.py | 34 ++++++++++++++++++++++++++++- extensions-builtin/Lora/networks.py | 12 +++++----- 2 files changed, 39 insertions(+), 7 deletions(-) diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py index a62e5eff9..f9b571b5f 100644 --- a/extensions-builtin/Lora/network.py +++ b/extensions-builtin/Lora/network.py @@ -3,6 +3,10 @@ import os from collections import namedtuple import enum +import torch +import torch.nn as nn +import torch.nn.functional as F + from modules import sd_models, cache, errors, hashes, shared NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module']) @@ -115,6 +119,29 @@ class NetworkModule: if hasattr(self.sd_module, 'weight'): self.shape = self.sd_module.weight.shape + self.ops = None + self.extra_kwargs = {} + if isinstance(self.sd_module, nn.Conv2d): + self.ops = F.conv2d + self.extra_kwargs = { + 'stride': self.sd_module.stride, + 'padding': self.sd_module.padding + } + elif isinstance(self.sd_module, nn.Linear): + self.ops = F.linear + elif isinstance(self.sd_module, nn.LayerNorm): + self.ops = F.layer_norm + self.extra_kwargs = { + 'normalized_shape': self.sd_module.normalized_shape, + 'eps': self.sd_module.eps + } + elif isinstance(self.sd_module, nn.GroupNorm): + self.ops = F.group_norm + self.extra_kwargs = { + 'num_groups': self.sd_module.num_groups, + 'eps': self.sd_module.eps + } + self.dim = None self.bias = weights.w.get("bias") self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None @@ -155,5 +182,10 @@ class NetworkModule: raise NotImplementedError() def forward(self, x, y): - raise NotImplementedError() + """A general forward implementation for all modules""" + if self.ops is None: + raise NotImplementedError() + else: + updown, ex_bias = self.calc_updown(self.sd_module.weight) + return y + self.ops(x, weight=updown, bias=ex_bias, **self.extra_kwargs) diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 72ebd6241..32e10b625 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -458,23 +458,23 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn self.network_current_names = wanted_names -def network_forward(module, input, original_forward): +def network_forward(org_module, input, original_forward): """ Old way of applying Lora by executing operations during layer's forward. Stacking many loras this way results in big performance degradation. """ if len(loaded_networks) == 0: - return original_forward(module, input) + return original_forward(org_module, input) input = devices.cond_cast_unet(input) - network_restore_weights_from_backup(module) - network_reset_cached_weight(module) + network_restore_weights_from_backup(org_module) + network_reset_cached_weight(org_module) - y = original_forward(module, input) + y = original_forward(org_module, input) - network_layer_name = getattr(module, 'network_layer_name', None) + network_layer_name = getattr(org_module, 'network_layer_name', None) for lora in loaded_networks: module = lora.modules.get(network_layer_name, None) if module is None: