mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
remove type annotations in new code because presumably they don't work in 3.7
This commit is contained in:
parent
f8e41a96bb
commit
20f8ec877a
@ -175,14 +175,14 @@ def get_multicond_prompt_list(prompts):
|
|||||||
|
|
||||||
class ComposableScheduledPromptConditioning:
|
class ComposableScheduledPromptConditioning:
|
||||||
def __init__(self, schedules, weight=1.0):
|
def __init__(self, schedules, weight=1.0):
|
||||||
self.schedules: list[ScheduledPromptConditioning] = schedules
|
self.schedules = schedules # : list[ScheduledPromptConditioning]
|
||||||
self.weight: float = weight
|
self.weight: float = weight
|
||||||
|
|
||||||
|
|
||||||
class MulticondLearnedConditioning:
|
class MulticondLearnedConditioning:
|
||||||
def __init__(self, shape, batch):
|
def __init__(self, shape, batch):
|
||||||
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
||||||
self.batch: list[list[ComposableScheduledPromptConditioning]] = batch
|
self.batch = batch # : list[list[ComposableScheduledPromptConditioning]]
|
||||||
|
|
||||||
|
|
||||||
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
||||||
@ -203,7 +203,7 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
|
|||||||
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
||||||
|
|
||||||
|
|
||||||
def reconstruct_cond_batch(c: list[list[ScheduledPromptConditioning]], current_step):
|
def reconstruct_cond_batch(c, current_step): # c: list[list[ScheduledPromptConditioning]]
|
||||||
param = c[0][0].cond
|
param = c[0][0].cond
|
||||||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||||
for i, cond_schedule in enumerate(c):
|
for i, cond_schedule in enumerate(c):
|
||||||
|
Loading…
Reference in New Issue
Block a user