Merge branch 'AUTOMATIC1111:master' into draft

This commit is contained in:
xucj98 2022-11-25 17:07:00 +08:00 committed by GitHub
commit 263b323de1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
34 changed files with 1132 additions and 373 deletions

View File

@ -70,7 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option

View File

@ -134,14 +134,13 @@ def prepare_enviroment():
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@d91a2963bf87c6a770d74894667e9ffa9f6de7ff")
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git")
taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMET_REPO', 'https://github.com/sczhou/CodeFormer.git')
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
@ -158,7 +157,6 @@ def prepare_enviroment():
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
sys.argv, run_tests = extract_arg(sys.argv, '--tests')
xformers = '--xformers' in sys.argv
deepdanbooru = '--deepdanbooru' in sys.argv
ngrok = '--ngrok' in sys.argv
try:
@ -193,9 +191,6 @@ def prepare_enviroment():
elif platform.system() == "Linux":
run_pip("install xformers", "xformers")
if not is_installed("deepdanbooru") and deepdanbooru:
run_pip(f"install {deepdanbooru_package}#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")

View File

@ -5,19 +5,19 @@ import uvicorn
from threading import Lock
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
from fastapi import APIRouter, Depends, FastAPI, HTTPException
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers
from modules.extras import run_extras, run_pnginfo
from PIL import PngImagePlugin
from modules.sd_models import checkpoints_list
from modules.realesrgan_model import get_realesrgan_models
from typing import List
if shared.cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
@ -25,8 +25,12 @@ def upscaler_to_index(name: str):
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
if config is None:
raise HTTPException(status_code=404, detail="Sampler not found")
return name
def setUpscalers(req: dict):
reqDict = vars(req)
@ -57,39 +61,53 @@ def encode_pil_to_base64(image):
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
if shared.cmd_opts.api_auth:
self.credenticals = dict()
for auth in shared.cmd_opts.api_auth.split(","):
user, password = auth.split(":")
self.credenticals[user] = password
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
self.app.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
self.app.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
self.app.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
self.app.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
self.app.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
self.app.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
self.app.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
self.app.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
self.app.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
self.app.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
self.app.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
self.app.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
self.app.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
self.app.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
self.add_api_route("/sdapi/v1/prompt-styles", self.get_promp_styles, methods=["GET"], response_model=List[PromptStyleItem])
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
return self.app.add_api_route(path, endpoint, **kwargs)
def auth(self, credenticals: HTTPBasicCredentials = Depends(HTTPBasic())):
if credenticals.username in self.credenticals:
if compare_digest(credenticals.password, self.credenticals[credenticals.username]):
return True
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"sampler_name": validate_sampler_name(txt2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True
}
@ -109,12 +127,6 @@ class Api:
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
sampler_index = sampler_to_index(img2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
@ -123,10 +135,9 @@ class Api:
if mask:
mask = decode_base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"sampler_name": validate_sampler_name(img2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
@ -231,10 +242,7 @@ class Api:
if interrogatereq.model == "clip":
processed = shared.interrogator.interrogate(img)
elif interrogatereq.model == "deepdanbooru":
if shared.cmd_opts.deepdanbooru:
processed = get_deepbooru_tags(img)
else:
raise HTTPException(status_code=404, detail="Model not found. Add --deepdanbooru when launching for using the model.")
processed = deepbooru.model.tag(img)
else:
raise HTTPException(status_code=404, detail="Model not found")
@ -245,6 +253,9 @@ class Api:
return {}
def skip(self):
shared.state.skip()
def get_config(self):
options = {}
for key in shared.opts.data.keys():
@ -256,14 +267,9 @@ class Api:
return options
def set_config(self, req: OptionsModel):
# currently req has all options fields even if you send a dict like { "send_seed": false }, which means it will
# overwrite all options with default values.
raise RuntimeError('Setting options via API is not supported')
reqDict = vars(req)
for o in reqDict:
setattr(shared.opts, o, reqDict[o])
def set_config(self, req: Dict[str, Any]):
for k, v in req.items():
shared.opts.set(k, v)
shared.opts.save(shared.config_filename)
return
@ -272,7 +278,7 @@ class Api:
return vars(shared.cmd_opts)
def get_samplers(self):
return [{"name":sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in all_samplers]
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
upscalers = []

View File

@ -176,9 +176,9 @@ class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
fields = {}
for key, value in opts.data.items():
metadata = opts.data_labels.get(key)
optType = opts.typemap.get(type(value), type(value))
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)
optType = opts.typemap.get(type(metadata.default), type(value))
if (metadata is not None):
fields.update({key: (Optional[optType], Field(

View File

@ -1,173 +1,97 @@
import os.path
from concurrent.futures import ProcessPoolExecutor
import multiprocessing
import time
import os
import re
import torch
from PIL import Image
import numpy as np
from modules import modelloader, paths, deepbooru_model, devices, images, shared
re_special = re.compile(r'([\\()])')
def get_deepbooru_tags(pil_image):
"""
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
"""
from modules import shared # prevents circular reference
try:
create_deepbooru_process(shared.opts.interrogate_deepbooru_score_threshold, create_deepbooru_opts())
return get_tags_from_process(pil_image)
finally:
release_process()
class DeepDanbooru:
def __init__(self):
self.model = None
def load(self):
if self.model is not None:
return
OPT_INCLUDE_RANKS = "include_ranks"
def create_deepbooru_opts():
from modules import shared
files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
ext_filter=".pt",
download_name='model-resnet_custom_v3.pt',
)
return {
"use_spaces": shared.opts.deepbooru_use_spaces,
"use_escape": shared.opts.deepbooru_escape,
"alpha_sort": shared.opts.deepbooru_sort_alpha,
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
}
self.model = deepbooru_model.DeepDanbooruModel()
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
self.model.eval()
self.model.to(devices.cpu, devices.dtype)
def deepbooru_process(queue, deepbooru_process_return, threshold, deepbooru_opts):
model, tags = get_deepbooru_tags_model()
while True: # while process is running, keep monitoring queue for new image
pil_image = queue.get()
if pil_image == "QUIT":
break
else:
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts)
def start(self):
self.load()
self.model.to(devices.device)
def stop(self):
if not shared.opts.interrogate_keep_models_in_memory:
self.model.to(devices.cpu)
devices.torch_gc()
def create_deepbooru_process(threshold, deepbooru_opts):
"""
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
dictionary is created to hold the tags created. To wait for tags to be returned, a value of -1 is assigned
to the dictionary and the method adding the image to the queue should wait for this value to be updated with
the tags.
"""
from modules import shared # prevents circular reference
context = multiprocessing.get_context("spawn")
shared.deepbooru_process_manager = context.Manager()
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process = context.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, deepbooru_opts))
shared.deepbooru_process.start()
def tag(self, pil_image):
self.start()
res = self.tag_multi(pil_image)
self.stop()
return res
def get_tags_from_process(image):
from modules import shared
def tag_multi(self, pil_image, force_disable_ranks=False):
threshold = shared.opts.interrogate_deepbooru_score_threshold
use_spaces = shared.opts.deepbooru_use_spaces
use_escape = shared.opts.deepbooru_escape
alpha_sort = shared.opts.deepbooru_sort_alpha
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
shared.deepbooru_process_return["value"] = -1
shared.deepbooru_process_queue.put(image)
while shared.deepbooru_process_return["value"] == -1:
time.sleep(0.2)
caption = shared.deepbooru_process_return["value"]
shared.deepbooru_process_return["value"] = -1
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
return caption
with torch.no_grad(), devices.autocast():
x = torch.from_numpy(a).cuda()
y = self.model(x)[0].detach().cpu().numpy()
probability_dict = {}
def release_process():
"""
Stops the deepbooru process to return used memory
"""
from modules import shared # prevents circular reference
shared.deepbooru_process_queue.put("QUIT")
shared.deepbooru_process.join()
shared.deepbooru_process_queue = None
shared.deepbooru_process = None
shared.deepbooru_process_return = None
shared.deepbooru_process_manager = None
for tag, probability in zip(self.model.tags, y):
if probability < threshold:
continue
def get_deepbooru_tags_model():
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
this_folder = os.path.dirname(__file__)
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
if not os.path.exists(os.path.join(model_path, 'project.json')):
# there is no point importing these every time
import zipfile
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(
r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
model_path)
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
zip_ref.extractall(model_path)
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
tags = dd.project.load_tags_from_project(model_path)
model = dd.project.load_model_from_project(
model_path, compile_model=False
)
return model, tags
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_opts):
import deepdanbooru as dd
import tensorflow as tf
import numpy as np
alpha_sort = deepbooru_opts['alpha_sort']
use_spaces = deepbooru_opts['use_spaces']
use_escape = deepbooru_opts['use_escape']
include_ranks = deepbooru_opts['include_ranks']
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
image = tf.image.resize(
image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True,
)
image = image.numpy() # EagerTensor to np.array
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
image_shape = image.shape
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
y = model.predict(image)[0]
result_dict = {}
for i, tag in enumerate(tags):
result_dict[tag] = y[i]
unsorted_tags_in_theshold = []
result_tags_print = []
for tag in tags:
if result_dict[tag] >= threshold:
if tag.startswith("rating:"):
continue
unsorted_tags_in_theshold.append((result_dict[tag], tag))
result_tags_print.append(f'{result_dict[tag]} {tag}')
# sort tags
result_tags_out = []
sort_ndx = 0
if alpha_sort:
sort_ndx = 1
probability_dict[tag] = probability
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
for weight, tag in unsorted_tags_in_theshold:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{weight:.3f})"
if alpha_sort:
tags = sorted(probability_dict)
else:
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
result_tags_out.append(tag_outformat)
res = []
print('\n'.join(sorted(result_tags_print, reverse=True)))
for tag in tags:
probability = probability_dict[tag]
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{probability:.3f})"
return ', '.join(result_tags_out)
res.append(tag_outformat)
return ", ".join(res)
model = DeepDanbooru()

676
modules/deepbooru_model.py Normal file
View File

@ -0,0 +1,676 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
class DeepDanbooruModel(nn.Module):
def __init__(self):
super(DeepDanbooruModel, self).__init__()
self.tags = []
self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
def forward(self, *inputs):
t_358, = inputs
t_359 = t_358.permute(*[0, 3, 1, 2])
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
t_360 = self.n_Conv_0(t_359_padded)
t_361 = F.relu(t_360)
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
t_362 = self.n_MaxPool_0(t_361)
t_363 = self.n_Conv_1(t_362)
t_364 = self.n_Conv_2(t_362)
t_365 = F.relu(t_364)
t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
t_366 = self.n_Conv_3(t_365_padded)
t_367 = F.relu(t_366)
t_368 = self.n_Conv_4(t_367)
t_369 = torch.add(t_368, t_363)
t_370 = F.relu(t_369)
t_371 = self.n_Conv_5(t_370)
t_372 = F.relu(t_371)
t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
t_373 = self.n_Conv_6(t_372_padded)
t_374 = F.relu(t_373)
t_375 = self.n_Conv_7(t_374)
t_376 = torch.add(t_375, t_370)
t_377 = F.relu(t_376)
t_378 = self.n_Conv_8(t_377)
t_379 = F.relu(t_378)
t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
t_380 = self.n_Conv_9(t_379_padded)
t_381 = F.relu(t_380)
t_382 = self.n_Conv_10(t_381)
t_383 = torch.add(t_382, t_377)
t_384 = F.relu(t_383)
t_385 = self.n_Conv_11(t_384)
t_386 = self.n_Conv_12(t_384)
t_387 = F.relu(t_386)
t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
t_388 = self.n_Conv_13(t_387_padded)
t_389 = F.relu(t_388)
t_390 = self.n_Conv_14(t_389)
t_391 = torch.add(t_390, t_385)
t_392 = F.relu(t_391)
t_393 = self.n_Conv_15(t_392)
t_394 = F.relu(t_393)
t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
t_395 = self.n_Conv_16(t_394_padded)
t_396 = F.relu(t_395)
t_397 = self.n_Conv_17(t_396)
t_398 = torch.add(t_397, t_392)
t_399 = F.relu(t_398)
t_400 = self.n_Conv_18(t_399)
t_401 = F.relu(t_400)
t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
t_402 = self.n_Conv_19(t_401_padded)
t_403 = F.relu(t_402)
t_404 = self.n_Conv_20(t_403)
t_405 = torch.add(t_404, t_399)
t_406 = F.relu(t_405)
t_407 = self.n_Conv_21(t_406)
t_408 = F.relu(t_407)
t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
t_409 = self.n_Conv_22(t_408_padded)
t_410 = F.relu(t_409)
t_411 = self.n_Conv_23(t_410)
t_412 = torch.add(t_411, t_406)
t_413 = F.relu(t_412)
t_414 = self.n_Conv_24(t_413)
t_415 = F.relu(t_414)
t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
t_416 = self.n_Conv_25(t_415_padded)
t_417 = F.relu(t_416)
t_418 = self.n_Conv_26(t_417)
t_419 = torch.add(t_418, t_413)
t_420 = F.relu(t_419)
t_421 = self.n_Conv_27(t_420)
t_422 = F.relu(t_421)
t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
t_423 = self.n_Conv_28(t_422_padded)
t_424 = F.relu(t_423)
t_425 = self.n_Conv_29(t_424)
t_426 = torch.add(t_425, t_420)
t_427 = F.relu(t_426)
t_428 = self.n_Conv_30(t_427)
t_429 = F.relu(t_428)
t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
t_430 = self.n_Conv_31(t_429_padded)
t_431 = F.relu(t_430)
t_432 = self.n_Conv_32(t_431)
t_433 = torch.add(t_432, t_427)
t_434 = F.relu(t_433)
t_435 = self.n_Conv_33(t_434)
t_436 = F.relu(t_435)
t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
t_437 = self.n_Conv_34(t_436_padded)
t_438 = F.relu(t_437)
t_439 = self.n_Conv_35(t_438)
t_440 = torch.add(t_439, t_434)
t_441 = F.relu(t_440)
t_442 = self.n_Conv_36(t_441)
t_443 = self.n_Conv_37(t_441)
t_444 = F.relu(t_443)
t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
t_445 = self.n_Conv_38(t_444_padded)
t_446 = F.relu(t_445)
t_447 = self.n_Conv_39(t_446)
t_448 = torch.add(t_447, t_442)
t_449 = F.relu(t_448)
t_450 = self.n_Conv_40(t_449)
t_451 = F.relu(t_450)
t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
t_452 = self.n_Conv_41(t_451_padded)
t_453 = F.relu(t_452)
t_454 = self.n_Conv_42(t_453)
t_455 = torch.add(t_454, t_449)
t_456 = F.relu(t_455)
t_457 = self.n_Conv_43(t_456)
t_458 = F.relu(t_457)
t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
t_459 = self.n_Conv_44(t_458_padded)
t_460 = F.relu(t_459)
t_461 = self.n_Conv_45(t_460)
t_462 = torch.add(t_461, t_456)
t_463 = F.relu(t_462)
t_464 = self.n_Conv_46(t_463)
t_465 = F.relu(t_464)
t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
t_466 = self.n_Conv_47(t_465_padded)
t_467 = F.relu(t_466)
t_468 = self.n_Conv_48(t_467)
t_469 = torch.add(t_468, t_463)
t_470 = F.relu(t_469)
t_471 = self.n_Conv_49(t_470)
t_472 = F.relu(t_471)
t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
t_473 = self.n_Conv_50(t_472_padded)
t_474 = F.relu(t_473)
t_475 = self.n_Conv_51(t_474)
t_476 = torch.add(t_475, t_470)
t_477 = F.relu(t_476)
t_478 = self.n_Conv_52(t_477)
t_479 = F.relu(t_478)
t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
t_480 = self.n_Conv_53(t_479_padded)
t_481 = F.relu(t_480)
t_482 = self.n_Conv_54(t_481)
t_483 = torch.add(t_482, t_477)
t_484 = F.relu(t_483)
t_485 = self.n_Conv_55(t_484)
t_486 = F.relu(t_485)
t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
t_487 = self.n_Conv_56(t_486_padded)
t_488 = F.relu(t_487)
t_489 = self.n_Conv_57(t_488)
t_490 = torch.add(t_489, t_484)
t_491 = F.relu(t_490)
t_492 = self.n_Conv_58(t_491)
t_493 = F.relu(t_492)
t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
t_494 = self.n_Conv_59(t_493_padded)
t_495 = F.relu(t_494)
t_496 = self.n_Conv_60(t_495)
t_497 = torch.add(t_496, t_491)
t_498 = F.relu(t_497)
t_499 = self.n_Conv_61(t_498)
t_500 = F.relu(t_499)
t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
t_501 = self.n_Conv_62(t_500_padded)
t_502 = F.relu(t_501)
t_503 = self.n_Conv_63(t_502)
t_504 = torch.add(t_503, t_498)
t_505 = F.relu(t_504)
t_506 = self.n_Conv_64(t_505)
t_507 = F.relu(t_506)
t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
t_508 = self.n_Conv_65(t_507_padded)
t_509 = F.relu(t_508)
t_510 = self.n_Conv_66(t_509)
t_511 = torch.add(t_510, t_505)
t_512 = F.relu(t_511)
t_513 = self.n_Conv_67(t_512)
t_514 = F.relu(t_513)
t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
t_515 = self.n_Conv_68(t_514_padded)
t_516 = F.relu(t_515)
t_517 = self.n_Conv_69(t_516)
t_518 = torch.add(t_517, t_512)
t_519 = F.relu(t_518)
t_520 = self.n_Conv_70(t_519)
t_521 = F.relu(t_520)
t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
t_522 = self.n_Conv_71(t_521_padded)
t_523 = F.relu(t_522)
t_524 = self.n_Conv_72(t_523)
t_525 = torch.add(t_524, t_519)
t_526 = F.relu(t_525)
t_527 = self.n_Conv_73(t_526)
t_528 = F.relu(t_527)
t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
t_529 = self.n_Conv_74(t_528_padded)
t_530 = F.relu(t_529)
t_531 = self.n_Conv_75(t_530)
t_532 = torch.add(t_531, t_526)
t_533 = F.relu(t_532)
t_534 = self.n_Conv_76(t_533)
t_535 = F.relu(t_534)
t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
t_536 = self.n_Conv_77(t_535_padded)
t_537 = F.relu(t_536)
t_538 = self.n_Conv_78(t_537)
t_539 = torch.add(t_538, t_533)
t_540 = F.relu(t_539)
t_541 = self.n_Conv_79(t_540)
t_542 = F.relu(t_541)
t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
t_543 = self.n_Conv_80(t_542_padded)
t_544 = F.relu(t_543)
t_545 = self.n_Conv_81(t_544)
t_546 = torch.add(t_545, t_540)
t_547 = F.relu(t_546)
t_548 = self.n_Conv_82(t_547)
t_549 = F.relu(t_548)
t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
t_550 = self.n_Conv_83(t_549_padded)
t_551 = F.relu(t_550)
t_552 = self.n_Conv_84(t_551)
t_553 = torch.add(t_552, t_547)
t_554 = F.relu(t_553)
t_555 = self.n_Conv_85(t_554)
t_556 = F.relu(t_555)
t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
t_557 = self.n_Conv_86(t_556_padded)
t_558 = F.relu(t_557)
t_559 = self.n_Conv_87(t_558)
t_560 = torch.add(t_559, t_554)
t_561 = F.relu(t_560)
t_562 = self.n_Conv_88(t_561)
t_563 = F.relu(t_562)
t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
t_564 = self.n_Conv_89(t_563_padded)
t_565 = F.relu(t_564)
t_566 = self.n_Conv_90(t_565)
t_567 = torch.add(t_566, t_561)
t_568 = F.relu(t_567)
t_569 = self.n_Conv_91(t_568)
t_570 = F.relu(t_569)
t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
t_571 = self.n_Conv_92(t_570_padded)
t_572 = F.relu(t_571)
t_573 = self.n_Conv_93(t_572)
t_574 = torch.add(t_573, t_568)
t_575 = F.relu(t_574)
t_576 = self.n_Conv_94(t_575)
t_577 = F.relu(t_576)
t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
t_578 = self.n_Conv_95(t_577_padded)
t_579 = F.relu(t_578)
t_580 = self.n_Conv_96(t_579)
t_581 = torch.add(t_580, t_575)
t_582 = F.relu(t_581)
t_583 = self.n_Conv_97(t_582)
t_584 = F.relu(t_583)
t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
t_585 = self.n_Conv_98(t_584_padded)
t_586 = F.relu(t_585)
t_587 = self.n_Conv_99(t_586)
t_588 = self.n_Conv_100(t_582)
t_589 = torch.add(t_587, t_588)
t_590 = F.relu(t_589)
t_591 = self.n_Conv_101(t_590)
t_592 = F.relu(t_591)
t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
t_593 = self.n_Conv_102(t_592_padded)
t_594 = F.relu(t_593)
t_595 = self.n_Conv_103(t_594)
t_596 = torch.add(t_595, t_590)
t_597 = F.relu(t_596)
t_598 = self.n_Conv_104(t_597)
t_599 = F.relu(t_598)
t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
t_600 = self.n_Conv_105(t_599_padded)
t_601 = F.relu(t_600)
t_602 = self.n_Conv_106(t_601)
t_603 = torch.add(t_602, t_597)
t_604 = F.relu(t_603)
t_605 = self.n_Conv_107(t_604)
t_606 = F.relu(t_605)
t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
t_607 = self.n_Conv_108(t_606_padded)
t_608 = F.relu(t_607)
t_609 = self.n_Conv_109(t_608)
t_610 = torch.add(t_609, t_604)
t_611 = F.relu(t_610)
t_612 = self.n_Conv_110(t_611)
t_613 = F.relu(t_612)
t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
t_614 = self.n_Conv_111(t_613_padded)
t_615 = F.relu(t_614)
t_616 = self.n_Conv_112(t_615)
t_617 = torch.add(t_616, t_611)
t_618 = F.relu(t_617)
t_619 = self.n_Conv_113(t_618)
t_620 = F.relu(t_619)
t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
t_621 = self.n_Conv_114(t_620_padded)
t_622 = F.relu(t_621)
t_623 = self.n_Conv_115(t_622)
t_624 = torch.add(t_623, t_618)
t_625 = F.relu(t_624)
t_626 = self.n_Conv_116(t_625)
t_627 = F.relu(t_626)
t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
t_628 = self.n_Conv_117(t_627_padded)
t_629 = F.relu(t_628)
t_630 = self.n_Conv_118(t_629)
t_631 = torch.add(t_630, t_625)
t_632 = F.relu(t_631)
t_633 = self.n_Conv_119(t_632)
t_634 = F.relu(t_633)
t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
t_635 = self.n_Conv_120(t_634_padded)
t_636 = F.relu(t_635)
t_637 = self.n_Conv_121(t_636)
t_638 = torch.add(t_637, t_632)
t_639 = F.relu(t_638)
t_640 = self.n_Conv_122(t_639)
t_641 = F.relu(t_640)
t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
t_642 = self.n_Conv_123(t_641_padded)
t_643 = F.relu(t_642)
t_644 = self.n_Conv_124(t_643)
t_645 = torch.add(t_644, t_639)
t_646 = F.relu(t_645)
t_647 = self.n_Conv_125(t_646)
t_648 = F.relu(t_647)
t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
t_649 = self.n_Conv_126(t_648_padded)
t_650 = F.relu(t_649)
t_651 = self.n_Conv_127(t_650)
t_652 = torch.add(t_651, t_646)
t_653 = F.relu(t_652)
t_654 = self.n_Conv_128(t_653)
t_655 = F.relu(t_654)
t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
t_656 = self.n_Conv_129(t_655_padded)
t_657 = F.relu(t_656)
t_658 = self.n_Conv_130(t_657)
t_659 = torch.add(t_658, t_653)
t_660 = F.relu(t_659)
t_661 = self.n_Conv_131(t_660)
t_662 = F.relu(t_661)
t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
t_663 = self.n_Conv_132(t_662_padded)
t_664 = F.relu(t_663)
t_665 = self.n_Conv_133(t_664)
t_666 = torch.add(t_665, t_660)
t_667 = F.relu(t_666)
t_668 = self.n_Conv_134(t_667)
t_669 = F.relu(t_668)
t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
t_670 = self.n_Conv_135(t_669_padded)
t_671 = F.relu(t_670)
t_672 = self.n_Conv_136(t_671)
t_673 = torch.add(t_672, t_667)
t_674 = F.relu(t_673)
t_675 = self.n_Conv_137(t_674)
t_676 = F.relu(t_675)
t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
t_677 = self.n_Conv_138(t_676_padded)
t_678 = F.relu(t_677)
t_679 = self.n_Conv_139(t_678)
t_680 = torch.add(t_679, t_674)
t_681 = F.relu(t_680)
t_682 = self.n_Conv_140(t_681)
t_683 = F.relu(t_682)
t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
t_684 = self.n_Conv_141(t_683_padded)
t_685 = F.relu(t_684)
t_686 = self.n_Conv_142(t_685)
t_687 = torch.add(t_686, t_681)
t_688 = F.relu(t_687)
t_689 = self.n_Conv_143(t_688)
t_690 = F.relu(t_689)
t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
t_691 = self.n_Conv_144(t_690_padded)
t_692 = F.relu(t_691)
t_693 = self.n_Conv_145(t_692)
t_694 = torch.add(t_693, t_688)
t_695 = F.relu(t_694)
t_696 = self.n_Conv_146(t_695)
t_697 = F.relu(t_696)
t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
t_698 = self.n_Conv_147(t_697_padded)
t_699 = F.relu(t_698)
t_700 = self.n_Conv_148(t_699)
t_701 = torch.add(t_700, t_695)
t_702 = F.relu(t_701)
t_703 = self.n_Conv_149(t_702)
t_704 = F.relu(t_703)
t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
t_705 = self.n_Conv_150(t_704_padded)
t_706 = F.relu(t_705)
t_707 = self.n_Conv_151(t_706)
t_708 = torch.add(t_707, t_702)
t_709 = F.relu(t_708)
t_710 = self.n_Conv_152(t_709)
t_711 = F.relu(t_710)
t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
t_712 = self.n_Conv_153(t_711_padded)
t_713 = F.relu(t_712)
t_714 = self.n_Conv_154(t_713)
t_715 = torch.add(t_714, t_709)
t_716 = F.relu(t_715)
t_717 = self.n_Conv_155(t_716)
t_718 = F.relu(t_717)
t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
t_719 = self.n_Conv_156(t_718_padded)
t_720 = F.relu(t_719)
t_721 = self.n_Conv_157(t_720)
t_722 = torch.add(t_721, t_716)
t_723 = F.relu(t_722)
t_724 = self.n_Conv_158(t_723)
t_725 = self.n_Conv_159(t_723)
t_726 = F.relu(t_725)
t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
t_727 = self.n_Conv_160(t_726_padded)
t_728 = F.relu(t_727)
t_729 = self.n_Conv_161(t_728)
t_730 = torch.add(t_729, t_724)
t_731 = F.relu(t_730)
t_732 = self.n_Conv_162(t_731)
t_733 = F.relu(t_732)
t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
t_734 = self.n_Conv_163(t_733_padded)
t_735 = F.relu(t_734)
t_736 = self.n_Conv_164(t_735)
t_737 = torch.add(t_736, t_731)
t_738 = F.relu(t_737)
t_739 = self.n_Conv_165(t_738)
t_740 = F.relu(t_739)
t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
t_741 = self.n_Conv_166(t_740_padded)
t_742 = F.relu(t_741)
t_743 = self.n_Conv_167(t_742)
t_744 = torch.add(t_743, t_738)
t_745 = F.relu(t_744)
t_746 = self.n_Conv_168(t_745)
t_747 = self.n_Conv_169(t_745)
t_748 = F.relu(t_747)
t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
t_749 = self.n_Conv_170(t_748_padded)
t_750 = F.relu(t_749)
t_751 = self.n_Conv_171(t_750)
t_752 = torch.add(t_751, t_746)
t_753 = F.relu(t_752)
t_754 = self.n_Conv_172(t_753)
t_755 = F.relu(t_754)
t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
t_756 = self.n_Conv_173(t_755_padded)
t_757 = F.relu(t_756)
t_758 = self.n_Conv_174(t_757)
t_759 = torch.add(t_758, t_753)
t_760 = F.relu(t_759)
t_761 = self.n_Conv_175(t_760)
t_762 = F.relu(t_761)
t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
t_763 = self.n_Conv_176(t_762_padded)
t_764 = F.relu(t_763)
t_765 = self.n_Conv_177(t_764)
t_766 = torch.add(t_765, t_760)
t_767 = F.relu(t_766)
t_768 = self.n_Conv_178(t_767)
t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
t_770 = torch.squeeze(t_769, 3)
t_770 = torch.squeeze(t_770, 2)
t_771 = torch.sigmoid(t_770)
return t_771
def load_state_dict(self, state_dict, **kwargs):
self.tags = state_dict.get('tags', [])
super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})

View File

@ -65,9 +65,12 @@ class Extension:
self.can_update = False
self.status = "latest"
def pull(self):
def fetch_and_reset_hard(self):
repo = git.Repo(self.path)
repo.remotes.origin.pull()
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
repo.git.fetch('--all')
repo.git.reset('--hard', 'origin')
def list_extensions():

View File

@ -73,6 +73,7 @@ def integrate_settings_paste_fields(component_dict):
'sd_hypernetwork': 'Hypernet',
'sd_hypernetwork_strength': 'Hypernet strength',
'CLIP_stop_at_last_layers': 'Clip skip',
'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
}
settings_paste_fields = [

View File

@ -12,7 +12,7 @@ import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, processing, sd_models, shared
from modules import devices, processing, sd_models, shared, sd_samplers
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
@ -535,7 +535,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_index = preview_sampler_index
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width

View File

@ -303,7 +303,7 @@ class FilenameGenerator:
'width': lambda self: self.image.width,
'height': lambda self: self.image.height,
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
'sampler': lambda self: self.p and sanitize_filename_part(sd_samplers.samplers[self.p.sampler_index].name, replace_spaces=False),
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]

View File

@ -6,7 +6,7 @@ import traceback
import numpy as np
from PIL import Image, ImageOps, ImageChops
from modules import devices
from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
@ -99,7 +99,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
sampler_index=sampler_index,
sampler_index=sd_samplers.samplers_for_img2img[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,

View File

@ -2,6 +2,7 @@ import json
import math
import os
import sys
import warnings
import torch
import numpy as np
@ -66,19 +67,15 @@ def apply_overlay(image, paste_loc, index, overlays):
return image
def get_correct_sampler(p):
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
return sd_samplers.samplers
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
return sd_samplers.samplers_for_img2img
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
return sd_samplers.samplers
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, sampler_index: int = None):
if sampler_index is not None:
warnings.warn("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name")
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@ -91,7 +88,7 @@ class StableDiffusionProcessing():
self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w
self.sampler_index: int = sampler_index
self.sampler_name: str = sampler_name
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
@ -116,6 +113,7 @@ class StableDiffusionProcessing():
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
self.is_using_inpainting_conditioning = False
if not seed_enable_extras:
self.subseed = -1
@ -126,6 +124,7 @@ class StableDiffusionProcessing():
self.scripts = None
self.script_args = None
self.all_prompts = None
self.all_negative_prompts = None
self.all_seeds = None
self.all_subseeds = None
@ -136,6 +135,8 @@ class StableDiffusionProcessing():
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1)
self.is_using_inpainting_conditioning = True
height = height or self.height
width = width or self.width
@ -154,6 +155,8 @@ class StableDiffusionProcessing():
# Dummy zero conditioning if we're not using inpainting model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
self.is_using_inpainting_conditioning = True
# Handle the different mask inputs
if image_mask is not None:
if torch.is_tensor(image_mask):
@ -200,7 +203,7 @@ class StableDiffusionProcessing():
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
@ -210,8 +213,7 @@ class Processed:
self.info = info
self.width = p.width
self.height = p.height
self.sampler_index = p.sampler_index
self.sampler = sd_samplers.samplers[p.sampler_index].name
self.sampler_name = p.sampler_name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
@ -238,17 +240,20 @@ class Processed:
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
self.all_prompts = all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed]
self.all_subseeds = all_subseeds or [self.subseed]
self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
def js(self):
obj = {
"prompt": self.prompt,
"prompt": self.all_prompts[0],
"all_prompts": self.all_prompts,
"negative_prompt": self.negative_prompt,
"negative_prompt": self.all_negative_prompts[0],
"all_negative_prompts": self.all_negative_prompts,
"seed": self.seed,
"all_seeds": self.all_seeds,
"subseed": self.subseed,
@ -256,8 +261,7 @@ class Processed:
"subseed_strength": self.subseed_strength,
"width": self.width,
"height": self.height,
"sampler_index": self.sampler_index,
"sampler": self.sampler,
"sampler_name": self.sampler_name,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
"batch_size": self.batch_size,
@ -273,6 +277,7 @@ class Processed:
"styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
}
return json.dumps(obj)
@ -384,7 +389,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params = {
"Steps": p.steps,
"Sampler": get_correct_sampler(p)[p.sampler_index].name,
"Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
@ -399,6 +404,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
@ -408,7 +414,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[0] if p.all_negative_prompts[0] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
@ -418,13 +424,15 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
try:
for k, v in p.override_settings.items():
setattr(opts, k, v) # we don't call onchange for simplicity which makes changing model, hypernet impossible
setattr(opts, k, v) # we don't call onchange for simplicity which makes changing model impossible
if k == 'sd_hypernetwork': shared.reload_hypernetworks() # make onchange call for changing hypernet since it is relatively fast to load on-change, while SD models are not
res = process_images_inner(p)
finally:
finally: # restore opts to original state
for k, v in stored_opts.items():
setattr(opts, k, v)
if k == 'sd_hypernetwork': shared.reload_hypernetworks()
return res
@ -437,10 +445,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else:
assert p.prompt is not None
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
devices.torch_gc()
seed = get_fixed_seed(p.seed)
@ -451,12 +455,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
comments = {}
shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list:
p.all_prompts = p.prompt
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
else:
p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
if type(p.negative_prompt) == list:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
else:
p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
if type(seed) == list:
p.all_seeds = seed
@ -471,6 +478,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
@ -495,6 +506,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
break
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
@ -505,7 +517,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
@ -591,7 +603,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
devices.torch_gc()
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
if p.scripts is not None:
p.scripts.postprocess(p, res)
@ -645,7 +657,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@ -706,7 +718,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
shared.state.nextjob()
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@ -730,7 +742,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.denoising_strength: float = denoising_strength
self.init_latent = None
self.image_mask = mask
#self.image_unblurred_mask = None
self.latent_mask = None
self.mask_for_overlay = None
self.mask_blur = mask_blur
@ -743,39 +754,39 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None
if self.image_mask is not None:
self.image_mask = self.image_mask.convert('L')
image_mask = self.image_mask
if image_mask is not None:
image_mask = image_mask.convert('L')
if self.inpainting_mask_invert:
self.image_mask = ImageOps.invert(self.image_mask)
#self.image_unblurred_mask = self.image_mask
image_mask = ImageOps.invert(image_mask)
if self.mask_blur > 0:
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
if self.inpaint_full_res:
self.mask_for_overlay = self.image_mask
mask = self.image_mask.convert('L')
self.mask_for_overlay = image_mask
mask = image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
self.image_mask = images.resize_image(2, mask, self.width, self.height)
image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
np_mask = np.array(self.image_mask)
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = []
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
@ -787,7 +798,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if crop_region is None:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if self.image_mask is not None:
if image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
@ -797,7 +808,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
if self.image_mask is not None:
if image_mask is not None:
if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask)
@ -829,7 +840,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
if self.image_mask is not None:
if image_mask is not None:
init_mask = latent_mask
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
@ -846,7 +857,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)

View File

@ -61,6 +61,8 @@ callback_map = dict(
callbacks_before_image_saved=[],
callbacks_image_saved=[],
callbacks_cfg_denoiser=[],
callbacks_before_component=[],
callbacks_after_component=[],
)
@ -137,6 +139,22 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
report_exception(c, 'cfg_denoiser_callback')
def before_component_callback(component, **kwargs):
for c in callback_map['callbacks_before_component']:
try:
c.callback(component, **kwargs)
except Exception:
report_exception(c, 'before_component_callback')
def after_component_callback(component, **kwargs):
for c in callback_map['callbacks_after_component']:
try:
c.callback(component, **kwargs)
except Exception:
report_exception(c, 'after_component_callback')
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
@ -220,3 +238,20 @@ def on_cfg_denoiser(callback):
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
"""
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
def on_before_component(callback):
"""register a function to be called before a component is created.
The callback is called with arguments:
- component - gradio component that is about to be created.
- **kwargs - args to gradio.components.IOComponent.__init__ function
Use elem_id/label fields of kwargs to figure out which component it is.
This can be useful to inject your own components somewhere in the middle of vanilla UI.
"""
add_callback(callback_map['callbacks_before_component'], callback)
def on_after_component(callback):
"""register a function to be called after a component is created. See on_before_component for more."""
add_callback(callback_map['callbacks_after_component'], callback)

View File

@ -17,6 +17,9 @@ class Script:
args_to = None
alwayson = False
is_txt2img = False
is_img2img = False
"""A gr.Group component that has all script's UI inside it"""
group = None
@ -93,6 +96,23 @@ class Script:
pass
def before_component(self, component, **kwargs):
"""
Called before a component is created.
Use elem_id/label fields of kwargs to figure out which component it is.
This can be useful to inject your own components somewhere in the middle of vanilla UI.
You can return created components in the ui() function to add them to the list of arguments for your processing functions
"""
pass
def after_component(self, component, **kwargs):
"""
Called after a component is created. Same as above.
"""
pass
def describe(self):
"""unused"""
return ""
@ -195,12 +215,18 @@ class ScriptRunner:
self.titles = []
self.infotext_fields = []
def setup_ui(self, is_img2img):
def initialize_scripts(self, is_img2img):
self.scripts.clear()
self.alwayson_scripts.clear()
self.selectable_scripts.clear()
for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
script.is_txt2img = not is_img2img
script.is_img2img = is_img2img
visibility = script.show(is_img2img)
visibility = script.show(script.is_img2img)
if visibility == AlwaysVisible:
self.scripts.append(script)
@ -211,6 +237,7 @@ class ScriptRunner:
self.scripts.append(script)
self.selectable_scripts.append(script)
def setup_ui(self):
self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
inputs = [None]
@ -220,7 +247,7 @@ class ScriptRunner:
script.args_from = len(inputs)
script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None:
return
@ -320,6 +347,22 @@ class ScriptRunner:
print(f"Error running postprocess: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def before_component(self, component, **kwargs):
for script in self.scripts:
try:
script.before_component(component, **kwargs)
except Exception:
print(f"Error running before_component: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def after_component(self, component, **kwargs):
for script in self.scripts:
try:
script.after_component(component, **kwargs)
except Exception:
print(f"Error running after_component: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
args_from = script.args_from
@ -341,6 +384,7 @@ class ScriptRunner:
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
scripts_current: ScriptRunner = None
def reload_script_body_only():
@ -357,3 +401,22 @@ def reload_scripts():
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
def IOComponent_init(self, *args, **kwargs):
if scripts_current is not None:
scripts_current.before_component(self, **kwargs)
script_callbacks.before_component_callback(self, **kwargs)
res = original_IOComponent_init(self, *args, **kwargs)
script_callbacks.after_component_callback(self, **kwargs)
if scripts_current is not None:
scripts_current.after_component(self, **kwargs)
return res
original_IOComponent_init = gr.components.IOComponent.__init__
gr.components.IOComponent.__init__ = IOComponent_init

View File

@ -96,8 +96,8 @@ class StableDiffusionModelHijack:
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
self.apply_circular(False)
self.layers = None
self.circular_enabled = False
self.clip = None
def apply_circular(self, enable):

View File

@ -165,16 +165,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
cache_enabled = shared.opts.sd_checkpoint_cache > 0
if cache_enabled:
sd_vae.restore_base_vae(model)
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
if cache_enabled and checkpoint_info in checkpoints_loaded:
# use checkpoint cache
vae_name = sd_vae.get_filename(vae_file) if vae_file else None
vae_message = f" with {vae_name} VAE" if vae_name else ""
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
print(f"Loading weights [{sd_model_hash}] from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
@ -220,6 +213,7 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
sd_vae.load_vae(model, vae_file)

View File

@ -46,16 +46,23 @@ all_samplers = [
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
all_samplers_map = {x.name: x for x in all_samplers}
samplers = []
samplers_for_img2img = []
def create_sampler_with_index(list_of_configs, index, model):
config = list_of_configs[index]
def create_sampler(name, model):
if name is not None:
config = all_samplers_map.get(name, None)
else:
config = all_samplers[0]
assert config is not None, f'bad sampler name: {name}'
sampler = config.constructor(model)
sampler.config = config
return sampler

View File

@ -83,47 +83,54 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
return vae_list
def resolve_vae(checkpoint_file, vae_file="auto"):
global first_load, vae_dict, vae_list
# if vae_file argument is provided, it takes priority, but not saved
if vae_file and vae_file not in default_vae_list:
if not os.path.isfile(vae_file):
vae_file = "auto"
print("VAE provided as function argument doesn't exist")
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
if first_load and shared.cmd_opts.vae_path is not None:
if os.path.isfile(shared.cmd_opts.vae_path):
vae_file = shared.cmd_opts.vae_path
shared.opts.data['sd_vae'] = get_filename(vae_file)
else:
print("VAE provided as command line argument doesn't exist")
# else, we load from settings
def get_vae_from_settings(vae_file="auto"):
# else, we load from settings, if not set to be default
if vae_file == "auto" and shared.opts.sd_vae is not None:
# if saved VAE settings isn't recognized, fallback to auto
vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
# if VAE selected but not found, fallback to auto
if vae_file not in default_vae_values and not os.path.isfile(vae_file):
vae_file = "auto"
print("Selected VAE doesn't exist")
print(f"Selected VAE doesn't exist: {vae_file}")
return vae_file
def resolve_vae(checkpoint_file=None, vae_file="auto"):
global first_load, vae_dict, vae_list
# if vae_file argument is provided, it takes priority, but not saved
if vae_file and vae_file not in default_vae_list:
if not os.path.isfile(vae_file):
print(f"VAE provided as function argument doesn't exist: {vae_file}")
vae_file = "auto"
# for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
if first_load and shared.cmd_opts.vae_path is not None:
if os.path.isfile(shared.cmd_opts.vae_path):
vae_file = shared.cmd_opts.vae_path
shared.opts.data['sd_vae'] = get_filename(vae_file)
else:
print(f"VAE provided as command line argument doesn't exist: {vae_file}")
# fallback to selector in settings, if vae selector not set to act as default fallback
if not shared.opts.sd_vae_as_default:
vae_file = get_vae_from_settings(vae_file)
# vae-path cmd arg takes priority for auto
if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
if os.path.isfile(shared.cmd_opts.vae_path):
vae_file = shared.cmd_opts.vae_path
print("Using VAE provided as command line argument")
print(f"Using VAE provided as command line argument: {vae_file}")
# if still not found, try look for ".vae.pt" beside model
model_path = os.path.splitext(checkpoint_file)[0]
if vae_file == "auto":
vae_file_try = model_path + ".vae.pt"
if os.path.isfile(vae_file_try):
vae_file = vae_file_try
print("Using VAE found beside selected model")
print(f"Using VAE found similar to selected model: {vae_file}")
# if still not found, try look for ".vae.ckpt" beside model
if vae_file == "auto":
vae_file_try = model_path + ".vae.ckpt"
if os.path.isfile(vae_file_try):
vae_file = vae_file_try
print("Using VAE found beside selected model")
print(f"Using VAE found similar to selected model: {vae_file}")
# No more fallbacks for auto
if vae_file == "auto":
vae_file = None
@ -139,6 +146,7 @@ def load_vae(model, vae_file=None):
# save_settings = False
if vae_file:
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}"
print(f"Loading VAE weights from: {vae_file}")
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}

View File

@ -55,7 +55,7 @@ parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
@ -81,6 +81,7 @@ parser.add_argument("--enable-console-prompts", action='store_true', help="print
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
parser.add_argument("--api-auth", type=str, help='Set authentication for api like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load model to quickly launch UI")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
@ -106,7 +107,7 @@ restricted_opts = {
"outdir_save",
}
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen) and not cmd_opts.enable_insecure_extension_access
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'])
@ -334,7 +335,8 @@ options_templates.update(options_section(('training', "Training"), {
options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": list(sd_vae.vae_list)}, refresh=sd_vae.refresh_vae_list),
"sd_vae": OptionInfo("auto", "SD VAE", gr.Dropdown, lambda: {"choices": sd_vae.vae_list}, refresh=sd_vae.refresh_vae_list),
"sd_vae_as_default": OptionInfo(False, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
@ -436,6 +438,23 @@ class Options:
return super(Options, self).__getattribute__(item)
def set(self, key, value):
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
oldval = self.data.get(key, None)
if oldval == value:
return False
try:
setattr(self, key, value)
except RuntimeError:
return False
if self.data_labels[key].onchange is not None:
self.data_labels[key].onchange()
return True
def save(self, filename):
assert not cmd_opts.freeze_settings, "saving settings is disabled"

View File

@ -65,17 +65,6 @@ class StyleDatabase:
def apply_negative_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
def apply_styles(self, p: StableDiffusionProcessing) -> None:
if isinstance(p.prompt, list):
p.prompt = [self.apply_styles_to_prompt(prompt, p.styles) for prompt in p.prompt]
else:
p.prompt = self.apply_styles_to_prompt(p.prompt, p.styles)
if isinstance(p.negative_prompt, list):
p.negative_prompt = [self.apply_negative_styles_to_prompt(prompt, p.styles) for prompt in p.negative_prompt]
else:
p.negative_prompt = self.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)
def save_styles(self, path: str) -> None:
# Write to temporary file first, so we don't nuke the file if something goes wrong
fd, temp_path = tempfile.mkstemp(".csv")

View File

@ -6,12 +6,10 @@ import sys
import tqdm
import time
from modules import shared, images
from modules import shared, images, deepbooru
from modules.paths import models_path
from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False):
@ -20,9 +18,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
shared.interrogator.load()
if process_caption_deepbooru:
db_opts = deepbooru.create_deepbooru_opts()
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
deepbooru.model.start()
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug)
@ -32,7 +28,7 @@ def preprocess(process_src, process_dst, process_width, process_height, preproce
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
deepbooru.release_process()
deepbooru.model.stop()
def listfiles(dirname):
@ -58,7 +54,7 @@ def save_pic_with_caption(image, index, params: PreprocessParams, existing_capti
if params.process_caption_deepbooru:
if len(caption) > 0:
caption += ", "
caption += deepbooru.get_tags_from_process(image)
caption += deepbooru.model.tag_multi(image)
filename_part = params.src
filename_part = os.path.splitext(filename_part)[0]

View File

@ -10,7 +10,7 @@ import csv
from PIL import Image, PngImagePlugin
from modules import shared, devices, sd_hijack, processing, sd_models, images
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers
import modules.textual_inversion.dataset
from modules.textual_inversion.learn_schedule import LearnRateScheduler
@ -345,7 +345,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_index = preview_sampler_index
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width

View File

@ -18,7 +18,7 @@ def create_embedding(name, initialization_text, nvpt, overwrite_old):
def preprocess(*args):
modules.textual_inversion.preprocess.preprocess(*args)
return "Preprocessing finished.", ""
return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
def train_embedding(*args):

View File

@ -1,4 +1,5 @@
import modules.scripts
from modules import sd_samplers
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
@ -21,7 +22,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
sampler_index=sampler_index,
sampler_name=sd_samplers.samplers[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,

View File

@ -19,14 +19,11 @@ import numpy as np
from PIL import Image, PngImagePlugin
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru
from modules.paths import script_path
from modules.shared import opts, cmd_opts, restricted_opts
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
import modules.codeformer_model
import modules.generation_parameters_copypaste as parameters_copypaste
import modules.gfpgan_model
@ -69,8 +66,11 @@ sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
css_hide_progressbar = """
.wrap .m-12 svg { display:none!important; }
.wrap .m-12::before { content:"Loading..." }
.wrap .z-20 svg { display:none!important; }
.wrap .z-20::before { content:"Loading..." }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
.meta-text-center { display:none!important; }
"""
# Using constants for these since the variation selector isn't visible.
@ -142,7 +142,7 @@ def save_files(js_data, images, do_make_zip, index):
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
@ -349,7 +349,7 @@ def interrogate(image):
def interrogate_deepbooru(image):
prompt = get_deepbooru_tags(image)
prompt = deepbooru.model.tag(image)
return gr_show(True) if prompt is None else prompt
@ -692,6 +692,9 @@ def create_ui(wrap_gradio_gpu_call):
parameters_copypaste.reset()
modules.scripts.scripts_current = modules.scripts.scripts_txt2img
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
dummy_component = gr.Label(visible=False)
@ -734,7 +737,7 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
txt2img_gallery, generation_info, html_info = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
@ -843,6 +846,9 @@ def create_ui(wrap_gradio_gpu_call):
token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
modules.scripts.scripts_current = modules.scripts.scripts_img2img
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
with gr.Blocks(analytics_enabled=False) as img2img_interface:
img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, token_counter, token_button = create_toprow(is_img2img=True)
@ -913,7 +919,7 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
custom_inputs = modules.scripts.scripts_img2img.setup_ui()
img2img_gallery, generation_info, html_info = create_output_panel("img2img", opts.outdir_img2img_samples)
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
@ -1062,6 +1068,8 @@ def create_ui(wrap_gradio_gpu_call):
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
modules.scripts.scripts_current = None
with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
@ -1249,7 +1257,9 @@ def create_ui(wrap_gradio_gpu_call):
gr.HTML(value="")
with gr.Column():
run_preprocess = gr.Button(value="Preprocess", variant='primary')
with gr.Row():
interrupt_preprocessing = gr.Button("Interrupt")
run_preprocess = gr.Button(value="Preprocess", variant='primary')
process_split.change(
fn=lambda show: gr_show(show),
@ -1422,6 +1432,12 @@ def create_ui(wrap_gradio_gpu_call):
outputs=[],
)
interrupt_preprocessing.click(
fn=lambda: shared.state.interrupt(),
inputs=[],
outputs=[],
)
def create_setting_component(key, is_quicksettings=False):
def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key].default
@ -1473,16 +1489,9 @@ def create_ui(wrap_gradio_gpu_call):
if comp == dummy_component:
continue
oldval = opts.data.get(key, None)
try:
setattr(opts, key, value)
except RuntimeError:
continue
if oldval != value:
if opts.data_labels[key].onchange is not None:
opts.data_labels[key].onchange()
if opts.set(key, value):
changed.append(key)
try:
opts.save(shared.config_filename)
except RuntimeError:
@ -1493,15 +1502,8 @@ def create_ui(wrap_gradio_gpu_call):
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
oldval = opts.data.get(key, None)
try:
setattr(opts, key, value)
except Exception:
return gr.update(value=oldval), opts.dumpjson()
if oldval != value:
if opts.data_labels[key].onchange is not None:
opts.data_labels[key].onchange()
if not opts.set(key, value):
return gr.update(value=getattr(opts, key)), opts.dumpjson()
opts.save(shared.config_filename)

View File

@ -36,9 +36,9 @@ def apply_and_restart(disable_list, update_list):
continue
try:
ext.pull()
ext.fetch_and_reset_hard()
except Exception:
print(f"Error pulling updates for {ext.name}:", file=sys.stderr)
print(f"Error getting updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled

View File

@ -1,3 +1,4 @@
accelerate
basicsr
diffusers
fairscale==0.4.4

View File

@ -1,5 +1,6 @@
transformers==4.19.2
diffusers==0.3.0
accelerate==0.12.0
basicsr==1.4.2
gfpgan==1.3.8
gradio==3.9

View File

@ -157,7 +157,7 @@ class Script(scripts.Script):
def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
# Override
if override_sampler:
p.sampler_index = [sampler.name for sampler in sd_samplers.samplers].index("Euler")
p.sampler_name = "Euler"
if override_prompt:
p.prompt = original_prompt
p.negative_prompt = original_negative_prompt
@ -191,7 +191,7 @@ class Script(scripts.Script):
combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, p.sampler_index, p.sd_model)
sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
sigmas = sampler.model_wrap.get_sigmas(p.steps)

View File

@ -10,9 +10,9 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
from modules import images
from modules import images, sd_samplers
from modules.hypernetworks import hypernetwork
from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.sd_samplers
@ -60,9 +60,9 @@ def apply_order(p, x, xs):
p.prompt = prompt_tmp + p.prompt
def build_samplers_dict(p):
def build_samplers_dict():
samplers_dict = {}
for i, sampler in enumerate(get_correct_sampler(p)):
for i, sampler in enumerate(sd_samplers.all_samplers):
samplers_dict[sampler.name.lower()] = i
for alias in sampler.aliases:
samplers_dict[alias.lower()] = i
@ -70,7 +70,7 @@ def build_samplers_dict(p):
def apply_sampler(p, x, xs):
sampler_index = build_samplers_dict(p).get(x.lower(), None)
sampler_index = build_samplers_dict().get(x.lower(), None)
if sampler_index is None:
raise RuntimeError(f"Unknown sampler: {x}")
@ -78,7 +78,7 @@ def apply_sampler(p, x, xs):
def confirm_samplers(p, xs):
samplers_dict = build_samplers_dict(p)
samplers_dict = build_samplers_dict()
for x in xs:
if x.lower() not in samplers_dict.keys():
raise RuntimeError(f"Unknown sampler: {x}")

View File

@ -40,4 +40,7 @@ export COMMANDLINE_ARGS=""
#export CODEFORMER_COMMIT_HASH=""
#export BLIP_COMMIT_HASH=""
# Uncomment to enable accelerated launch
#export ACCELERATE="True"
###########################################

View File

@ -28,15 +28,27 @@ goto :show_stdout_stderr
:activate_venv
set PYTHON="%~dp0%VENV_DIR%\Scripts\Python.exe"
echo venv %PYTHON%
if [%ACCELERATE%] == ["True"] goto :accelerate
goto :launch
:skip_venv
:accelerate
echo "Checking for accelerate"
set ACCELERATE="%~dp0%VENV_DIR%\Scripts\accelerate.exe"
if EXIST %ACCELERATE% goto :accelerate_launch
:launch
%PYTHON% launch.py %*
pause
exit /b
:accelerate_launch
echo "Accelerating"
%ACCELERATE% launch --num_cpu_threads_per_process=6 launch.py
pause
exit /b
:show_stdout_stderr
echo.

View File

@ -33,7 +33,10 @@ from modules.shared import cmd_opts
import modules.hypernetworks.hypernetwork
queue_lock = threading.Lock()
server_name = "0.0.0.0" if cmd_opts.listen else cmd_opts.server_name
if cmd_opts.server_name:
server_name = cmd_opts.server_name
else:
server_name = "0.0.0.0" if cmd_opts.listen else None
def wrap_queued_call(func):
def f(*args, **kwargs):
@ -82,6 +85,7 @@ def initialize():
modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)

View File

@ -134,7 +134,15 @@ else
exit 1
fi
printf "\n%s\n" "${delimiter}"
printf "Launching launch.py..."
printf "\n%s\n" "${delimiter}"
"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]
then
printf "\n%s\n" "${delimiter}"
printf "Accelerating launch.py..."
printf "\n%s\n" "${delimiter}"
accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
else
printf "\n%s\n" "${delimiter}"
printf "Launching launch.py..."
printf "\n%s\n" "${delimiter}"
"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
fi