diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index fd5b0c0fd..2af1bc4cf 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -9,7 +9,7 @@ class ModuleTypeOFT(network.ModuleType): return None -# adapted from https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py +# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): @@ -17,7 +17,6 @@ class NetworkModuleOFT(network.NetworkModule): self.oft_blocks = weights.w["oft_blocks"] self.alpha = weights.w["alpha"] - self.dim = self.oft_blocks.shape[0] self.num_blocks = self.dim @@ -26,64 +25,57 @@ class NetworkModuleOFT(network.NetworkModule): elif "Conv" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_channels - self.constraint = self.alpha - #self.constraint = self.alpha * self.out_dim + self.constraint = self.alpha * self.out_dim self.block_size = self.out_dim // self.num_blocks self.org_module: list[torch.Module] = [self.sd_module] - - self.R = self.get_weight() - + self.R = self.get_weight(self.oft_blocks) self.apply_to() # replace forward method of original linear rather than replacing the module + # how do we revert this to unload the weights? def apply_to(self): self.org_forward = self.org_module[0].forward self.org_module[0].forward = self.forward - def get_weight(self, multiplier=None): - if not multiplier: - multiplier = self.multiplier() - block_Q = self.oft_blocks - self.oft_blocks.transpose(1, 2) + def get_weight(self, oft_blocks, multiplier=None): + block_Q = oft_blocks - oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=self.constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) - - block_R_weighted = multiplier * block_R + (1 - multiplier) * I - R = torch.block_diag(*block_R_weighted) + #block_R_weighted = multiplier * block_R + (1 - multiplier) * I + #R = torch.block_diag(*block_R_weighted) + R = torch.block_diag(*block_R) return R def calc_updown(self, orig_weight): - # this works - # R = self.R - self.R = self.get_weight(self.multiplier()) + oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) - # sending R to device causes major deepfrying i.e. just doesn't work - # R = self.R.to(orig_weight.device, dtype=orig_weight.dtype) + R = self.get_weight(oft_blocks) + self.R = R # if orig_weight.dim() == 4: # weight = torch.einsum("oihw, op -> pihw", orig_weight, R) # else: # weight = torch.einsum("oi, op -> pi", orig_weight, R) - updown = orig_weight @ self.R + updown = orig_weight @ R output_shape = self.oft_blocks.shape - ## this works - # updown = orig_weight @ R - # output_shape = [orig_weight.size(0), R.size(1)] - return self.finalize_updown(updown, orig_weight, output_shape) def forward(self, x, y=None): x = self.org_forward(x) if self.multiplier() == 0.0: return x + + # calculating R here is excruciatingly slow #R = self.get_weight().to(x.device, dtype=x.dtype) R = self.R.to(x.device, dtype=x.dtype) + if x.dim() == 4: x = x.permute(0, 2, 3, 1) x = torch.matmul(x, R)