From 39919c40dd18f5a14ae21403efea1b0f819756c7 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 10 Oct 2022 20:32:37 +0300 Subject: [PATCH] add eta noise seed delta option --- javascript/hints.js | 1 + modules/processing.py | 6 +++++- modules/shared.py | 1 + 3 files changed, 7 insertions(+), 1 deletion(-) diff --git a/javascript/hints.js b/javascript/hints.js index 8e352e94a..47b807764 100644 --- a/javascript/hints.js +++ b/javascript/hints.js @@ -79,6 +79,7 @@ titles = { "Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", "Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.", + "Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.", } diff --git a/modules/processing.py b/modules/processing.py index 50ba4fc5f..698b3069e 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -207,7 +207,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see # enables the generation of additional tensors with noise that the sampler will use during its processing. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to # produce the same images as with two batches [100], [101]. - if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds: + if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0): sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] else: sampler_noises = None @@ -247,6 +247,9 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see if sampler_noises is not None: cnt = p.sampler.number_of_needed_noises(p) + if opts.eta_noise_seed_delta > 0: + torch.manual_seed(seed + opts.eta_noise_seed_delta) + for j in range(cnt): sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) @@ -301,6 +304,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Denoising strength": getattr(p, 'denoising_strength', None), "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), "Clip skip": None if clip_skip <= 1 else clip_skip, + "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, } generation_params.update(p.extra_generation_params) diff --git a/modules/shared.py b/modules/shared.py index 5dfc344cc..b1c65ecf6 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -260,6 +260,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters" 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), + 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}), }))