From 54f926b11d29910df9f813e2e0ea6d35c6f4a50d Mon Sep 17 00:00:00 2001 From: Robert Barron Date: Thu, 10 Aug 2023 07:48:04 -0700 Subject: [PATCH] fix bad merge --- modules/shared.py | 964 ++-------------------------------------------- 1 file changed, 40 insertions(+), 924 deletions(-) diff --git a/modules/shared.py b/modules/shared.py index a605b08b7..d9d014845 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -1,839 +1,52 @@ -import datetime -import json -import os -import re import sys -import threading -import time -import logging import gradio as gr -import torch -import tqdm -import launch -import modules.interrogate -import modules.memmon -import modules.styles -import modules.devices as devices -from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args +from modules import shared_cmd_options, shared_gradio_themes, options, shared_items from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401 from ldm.models.diffusion.ddpm import LatentDiffusion -from typing import Optional +from modules import util -log = logging.getLogger(__name__) - -demo = None - -parser = cmd_args.parser - -script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file)) -script_loading.preload_extensions(extensions_builtin_dir, parser) - -if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None: - cmd_opts = parser.parse_args() -else: - cmd_opts, _ = parser.parse_known_args() - - -restricted_opts = { - "samples_filename_pattern", - "directories_filename_pattern", - "outdir_samples", - "outdir_txt2img_samples", - "outdir_img2img_samples", - "outdir_extras_samples", - "outdir_grids", - "outdir_txt2img_grids", - "outdir_save", - "outdir_init_images" -} - -# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json -gradio_hf_hub_themes = [ - "gradio/base", - "gradio/glass", - "gradio/monochrome", - "gradio/seafoam", - "gradio/soft", - "gradio/dracula_test", - "abidlabs/dracula_test", - "abidlabs/Lime", - "abidlabs/pakistan", - "Ama434/neutral-barlow", - "dawood/microsoft_windows", - "finlaymacklon/smooth_slate", - "Franklisi/darkmode", - "freddyaboulton/dracula_revamped", - "freddyaboulton/test-blue", - "gstaff/xkcd", - "Insuz/Mocha", - "Insuz/SimpleIndigo", - "JohnSmith9982/small_and_pretty", - "nota-ai/theme", - "nuttea/Softblue", - "ParityError/Anime", - "reilnuud/polite", - "remilia/Ghostly", - "rottenlittlecreature/Moon_Goblin", - "step-3-profit/Midnight-Deep", - "Taithrah/Minimal", - "ysharma/huggingface", - "ysharma/steampunk" -] - - -cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access - -devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \ - (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer']) - -devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16 -devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16 - -device = devices.device -weight_load_location = None if cmd_opts.lowram else "cpu" +cmd_opts = shared_cmd_options.cmd_opts +parser = shared_cmd_options.parser batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram -xformers_available = False +styles_filename = cmd_opts.styles_file config_filename = cmd_opts.ui_settings_file +hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config} + +demo = None + +device = None + +weight_load_location = None + +xformers_available = False -os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = {} + loaded_hypernetworks = [] +state = None -def reload_hypernetworks(): - from modules.hypernetworks import hypernetwork - global hypernetworks +prompt_styles = None - hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) - - -class State: - skipped = False - interrupted = False - job = "" - job_no = 0 - job_count = 0 - processing_has_refined_job_count = False - job_timestamp = '0' - sampling_step = 0 - sampling_steps = 0 - current_latent = None - current_image = None - current_image_sampling_step = 0 - id_live_preview = 0 - textinfo = None - time_start = None - server_start = None - _server_command_signal = threading.Event() - _server_command: Optional[str] = None - - @property - def need_restart(self) -> bool: - # Compatibility getter for need_restart. - return self.server_command == "restart" - - @need_restart.setter - def need_restart(self, value: bool) -> None: - # Compatibility setter for need_restart. - if value: - self.server_command = "restart" - - @property - def server_command(self): - return self._server_command - - @server_command.setter - def server_command(self, value: Optional[str]) -> None: - """ - Set the server command to `value` and signal that it's been set. - """ - self._server_command = value - self._server_command_signal.set() - - def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]: - """ - Wait for server command to get set; return and clear the value and signal. - """ - if self._server_command_signal.wait(timeout): - self._server_command_signal.clear() - req = self._server_command - self._server_command = None - return req - return None - - def request_restart(self) -> None: - self.interrupt() - self.server_command = "restart" - log.info("Received restart request") - - def skip(self): - self.skipped = True - log.info("Received skip request") - - def interrupt(self): - self.interrupted = True - log.info("Received interrupt request") - - def nextjob(self): - if opts.live_previews_enable and opts.show_progress_every_n_steps == -1: - self.do_set_current_image() - - self.job_no += 1 - self.sampling_step = 0 - self.current_image_sampling_step = 0 - - def dict(self): - obj = { - "skipped": self.skipped, - "interrupted": self.interrupted, - "job": self.job, - "job_count": self.job_count, - "job_timestamp": self.job_timestamp, - "job_no": self.job_no, - "sampling_step": self.sampling_step, - "sampling_steps": self.sampling_steps, - } - - return obj - - def begin(self, job: str = "(unknown)"): - self.sampling_step = 0 - self.job_count = -1 - self.processing_has_refined_job_count = False - self.job_no = 0 - self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") - self.current_latent = None - self.current_image = None - self.current_image_sampling_step = 0 - self.id_live_preview = 0 - self.skipped = False - self.interrupted = False - self.textinfo = None - self.time_start = time.time() - self.job = job - devices.torch_gc() - log.info("Starting job %s", job) - - def end(self): - duration = time.time() - self.time_start - log.info("Ending job %s (%.2f seconds)", self.job, duration) - self.job = "" - self.job_count = 0 - - devices.torch_gc() - - def set_current_image(self): - """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this""" - if not parallel_processing_allowed: - return - - if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1: - self.do_set_current_image() - - def do_set_current_image(self): - if self.current_latent is None: - return - - import modules.sd_samplers - - try: - if opts.show_progress_grid: - self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent)) - else: - self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent)) - - self.current_image_sampling_step = self.sampling_step - - except Exception: - # when switching models during genration, VAE would be on CPU, so creating an image will fail. - # we silently ignore this error - errors.record_exception() - - def assign_current_image(self, image): - self.current_image = image - self.id_live_preview += 1 - - -state = State() -state.server_start = time.time() - -styles_filename = cmd_opts.styles_file -prompt_styles = modules.styles.StyleDatabase(styles_filename) - -interrogator = modules.interrogate.InterrogateModels("interrogate") +interrogator = None face_restorers = [] +options_templates = None +opts = None +restricted_opts = None -class OptionInfo: - def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''): - self.default = default - self.label = label - self.component = component - self.component_args = component_args - self.onchange = onchange - self.section = section - self.refresh = refresh - self.do_not_save = False - - self.comment_before = comment_before - """HTML text that will be added after label in UI""" - - self.comment_after = comment_after - """HTML text that will be added before label in UI""" - - def link(self, label, url): - self.comment_before += f"[{label}]" - return self - - def js(self, label, js_func): - self.comment_before += f"[{label}]" - return self - - def info(self, info): - self.comment_after += f"({info})" - return self - - def html(self, html): - self.comment_after += html - return self - - def needs_restart(self): - self.comment_after += " (requires restart)" - return self - - def needs_reload_ui(self): - self.comment_after += " (requires Reload UI)" - return self - - -class OptionHTML(OptionInfo): - def __init__(self, text): - super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs)) - - self.do_not_save = True - - -def options_section(section_identifier, options_dict): - for v in options_dict.values(): - v.section = section_identifier - - return options_dict - - -def list_checkpoint_tiles(): - import modules.sd_models - return modules.sd_models.checkpoint_tiles() - - -def refresh_checkpoints(): - import modules.sd_models - return modules.sd_models.list_models() - - -def list_samplers(): - import modules.sd_samplers - return modules.sd_samplers.all_samplers - - -hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config} -tab_names = [] - -options_templates = {} - -options_templates.update(options_section(('saving-images', "Saving images/grids"), { - "samples_save": OptionInfo(True, "Always save all generated images"), - "samples_format": OptionInfo('png', 'File format for images'), - "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), - "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs), - - "grid_save": OptionInfo(True, "Always save all generated image grids"), - "grid_format": OptionInfo('png', 'File format for grids'), - "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"), - "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"), - "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"), - "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), - "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), - "font": OptionInfo("", "Font for image grids that have text"), - "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}), - "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}), - "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}), - - "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), - "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), - "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), - "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."), - "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), - "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"), - "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"), - "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), - "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"), - "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"), - "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number), - "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number), - "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"), - - "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), - "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), - "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"), - "save_init_img": OptionInfo(False, "Save init images when using img2img"), - - "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"), - "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"), - - "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."), -})) - -options_templates.update(options_section(('saving-paths', "Paths for saving"), { - "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs), - "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs), - "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs), - "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs), - "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs), - "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs), - "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs), - "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs), - "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs), -})) - -options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { - "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"), - "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"), - "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"), - "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), - "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}), -})) - -options_templates.update(options_section(('upscaling', "Upscaling"), { - "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"), - "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"), - "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), - "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), -})) - -options_templates.update(options_section(('face-restoration', "Face restoration"), { - "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), - "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"), - "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), -})) - -options_templates.update(options_section(('system', "System"), { - "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(), - "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(), - "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"), - "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), - "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), - "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), - "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""), - "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"), - "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."), -})) - -options_templates.update(options_section(('training', "Training"), { - "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), - "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."), - "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."), - "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."), - "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), - "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), - "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), - "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), - "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"), - "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."), - "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."), - "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."), -})) - -options_templates.update(options_section(('sd', "Stable Diffusion"), { - "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), - "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}), - "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"), - "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"), - "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"), - "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(), - "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"), - "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), - "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"), - "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"), - "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), - "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"), -})) - -options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), { - "sdxl_crop_top": OptionInfo(0, "crop top coordinate"), - "sdxl_crop_left": OptionInfo(0, "crop left coordinate"), - "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"), - "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"), -})) - -options_templates.update(options_section(('vae', "VAE"), { - "sd_vae_explanation": OptionHTML(""" -VAE is a neural network that transforms a standard RGB -image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling -(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished. -For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling. -"""), - "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), - "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"), - "auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"), - "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"), - "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"), -})) - -options_templates.update(options_section(('img2img', "img2img"), { - "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), - "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), - "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"), - "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}), - "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(), - "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(), - "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(), - "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(), - "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"), - "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"), -})) - -options_templates.update(options_section(('optimizations', "Optimizations"), { - "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}), - "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"), - "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), - "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), - "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), - "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"), - "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"), -})) - -options_templates.update(options_section(('compatibility', "Compatibility"), { - "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), - "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."), - "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."), - "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."), - "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."), - "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."), - "use_old_scheduling": OptionInfo(False, "Use old prompt where first pass and hires both used the same timeline, and < 1 meant relative and >= 1 meant absolute"), -})) - -options_templates.update(options_section(('interrogate', "Interrogate"), { - "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"), - "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"), - "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), - "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), - "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"), - "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types), - "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), - "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"), - "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"), - "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"), - "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"), -})) - -options_templates.update(options_section(('extra_networks', "Extra Networks"), { - "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."), - "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'), - "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}), - "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"), - "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"), - "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"), - "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"), - "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"), - "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(), - "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"), - "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"), - "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks), -})) - -options_templates.update(options_section(('ui', "User interface"), { - "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(), - "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(), - "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"), - "return_grid": OptionInfo(True, "Show grid in results for web"), - "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), - "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), - "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), - "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), - "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), - "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"), - "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"), - "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), - "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(), - "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(), - "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), - "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), - "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), - "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"), - "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(), - "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(), - "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(), - "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(), - "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(), - "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(), - "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(), -})) - - -options_templates.update(options_section(('infotext', "Infotext"), { - "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), - "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), - "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"), - "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"), - "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"), - "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html(""""""), - -})) - -options_templates.update(options_section(('ui', "Live previews"), { - "show_progressbar": OptionInfo(True, "Show progressbar"), - "live_previews_enable": OptionInfo(True, "Show live previews of the created image"), - "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}), - "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), - "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"), - "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"), - "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), - "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), -})) - -options_templates.update(options_section(('sampler-params', "Sampler parameters"), { - "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_reload_ui(), - "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"), - "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"), - "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), - 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}), - 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf"), - 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - 'k_sched_type': OptionInfo("Automatic", "scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), - 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"), - 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise schedule"), - 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a more steep noise schedule (decreases faster)"), - 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), - 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), - 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}), - 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}), - 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"), - 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"), -})) - -options_templates.update(options_section(('postprocessing', "Postprocessing"), { - 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), - 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), - 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), -})) - -options_templates.update(options_section((None, "Hidden options"), { - "disabled_extensions": OptionInfo([], "Disable these extensions"), - "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}), - "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"), - "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"), -})) - - -options_templates.update() - - -class Options: - data = None - data_labels = options_templates - typemap = {int: float} - - def __init__(self): - self.data = {k: v.default for k, v in self.data_labels.items()} - - def __setattr__(self, key, value): - if self.data is not None: - if key in self.data or key in self.data_labels: - assert not cmd_opts.freeze_settings, "changing settings is disabled" - - info = opts.data_labels.get(key, None) - if info.do_not_save: - return - - comp_args = info.component_args if info else None - if isinstance(comp_args, dict) and comp_args.get('visible', True) is False: - raise RuntimeError(f"not possible to set {key} because it is restricted") - - if cmd_opts.hide_ui_dir_config and key in restricted_opts: - raise RuntimeError(f"not possible to set {key} because it is restricted") - - self.data[key] = value - return - - return super(Options, self).__setattr__(key, value) - - def __getattr__(self, item): - if self.data is not None: - if item in self.data: - return self.data[item] - - if item in self.data_labels: - return self.data_labels[item].default - - return super(Options, self).__getattribute__(item) - - def set(self, key, value): - """sets an option and calls its onchange callback, returning True if the option changed and False otherwise""" - - oldval = self.data.get(key, None) - if oldval == value: - return False - - if self.data_labels[key].do_not_save: - return False - - try: - setattr(self, key, value) - except RuntimeError: - return False - - if self.data_labels[key].onchange is not None: - try: - self.data_labels[key].onchange() - except Exception as e: - errors.display(e, f"changing setting {key} to {value}") - setattr(self, key, oldval) - return False - - return True - - def get_default(self, key): - """returns the default value for the key""" - - data_label = self.data_labels.get(key) - if data_label is None: - return None - - return data_label.default - - def save(self, filename): - assert not cmd_opts.freeze_settings, "saving settings is disabled" - - with open(filename, "w", encoding="utf8") as file: - json.dump(self.data, file, indent=4) - - def same_type(self, x, y): - if x is None or y is None: - return True - - type_x = self.typemap.get(type(x), type(x)) - type_y = self.typemap.get(type(y), type(y)) - - return type_x == type_y - - def load(self, filename): - with open(filename, "r", encoding="utf8") as file: - self.data = json.load(file) - - # 1.1.1 quicksettings list migration - if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None: - self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')] - - # 1.4.0 ui_reorder - if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data: - self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')] - - bad_settings = 0 - for k, v in self.data.items(): - info = self.data_labels.get(k, None) - if info is not None and not self.same_type(info.default, v): - print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr) - bad_settings += 1 - - if bad_settings > 0: - print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr) - - def onchange(self, key, func, call=True): - item = self.data_labels.get(key) - item.onchange = func - - if call: - func() - - def dumpjson(self): - d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()} - d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None} - d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None} - return json.dumps(d) - - def add_option(self, key, info): - self.data_labels[key] = info - - def reorder(self): - """reorder settings so that all items related to section always go together""" - - section_ids = {} - settings_items = self.data_labels.items() - for _, item in settings_items: - if item.section not in section_ids: - section_ids[item.section] = len(section_ids) - - self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section])) - - def cast_value(self, key, value): - """casts an arbitrary to the same type as this setting's value with key - Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str) - """ - - if value is None: - return None - - default_value = self.data_labels[key].default - if default_value is None: - default_value = getattr(self, key, None) - if default_value is None: - return None - - expected_type = type(default_value) - if expected_type == bool and value == "False": - value = False - else: - value = expected_type(value) - - return value - - -opts = Options() -if os.path.exists(config_filename): - opts.load(config_filename) - - -class Shared(sys.modules[__name__].__class__): - """ - this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than - at program startup. - """ - - sd_model_val = None - - @property - def sd_model(self): - import modules.sd_models - - return modules.sd_models.model_data.get_sd_model() - - @sd_model.setter - def sd_model(self, value): - import modules.sd_models - - modules.sd_models.model_data.set_sd_model(value) - - -sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead -sys.modules[__name__].__class__ = Shared +sd_model: LatentDiffusion = None settings_components = None """assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings""" +tab_names = [] + latent_upscale_default_mode = "Latent" latent_upscale_modes = { "Latent": {"mode": "bilinear", "antialias": False}, @@ -852,121 +65,24 @@ progress_print_out = sys.stdout gradio_theme = gr.themes.Base() +total_tqdm = None -def reload_gradio_theme(theme_name=None): - global gradio_theme - if not theme_name: - theme_name = opts.gradio_theme +mem_mon = None - default_theme_args = dict( - font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'], - font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], - ) +options_section = options.options_section +OptionInfo = options.OptionInfo +OptionHTML = options.OptionHTML - if theme_name == "Default": - gradio_theme = gr.themes.Default(**default_theme_args) - else: - try: - theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes') - theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json') - if opts.gradio_themes_cache and os.path.exists(theme_cache_path): - gradio_theme = gr.themes.ThemeClass.load(theme_cache_path) - else: - os.makedirs(theme_cache_dir, exist_ok=True) - gradio_theme = gr.themes.ThemeClass.from_hub(theme_name) - gradio_theme.dump(theme_cache_path) - except Exception as e: - errors.display(e, "changing gradio theme") - gradio_theme = gr.themes.Default(**default_theme_args) +natural_sort_key = util.natural_sort_key +listfiles = util.listfiles +html_path = util.html_path +html = util.html +walk_files = util.walk_files +ldm_print = util.ldm_print +reload_gradio_theme = shared_gradio_themes.reload_gradio_theme -class TotalTQDM: - def __init__(self): - self._tqdm = None - - def reset(self): - self._tqdm = tqdm.tqdm( - desc="Total progress", - total=state.job_count * state.sampling_steps, - position=1, - file=progress_print_out - ) - - def update(self): - if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars: - return - if self._tqdm is None: - self.reset() - self._tqdm.update() - - def updateTotal(self, new_total): - if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars: - return - if self._tqdm is None: - self.reset() - self._tqdm.total = new_total - - def clear(self): - if self._tqdm is not None: - self._tqdm.refresh() - self._tqdm.close() - self._tqdm = None - - -total_tqdm = TotalTQDM() - -mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts) -mem_mon.start() - - -def natural_sort_key(s, regex=re.compile('([0-9]+)')): - return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)] - - -def listfiles(dirname): - filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")] - return [file for file in filenames if os.path.isfile(file)] - - -def html_path(filename): - return os.path.join(script_path, "html", filename) - - -def html(filename): - path = html_path(filename) - - if os.path.exists(path): - with open(path, encoding="utf8") as file: - return file.read() - - return "" - - -def walk_files(path, allowed_extensions=None): - if not os.path.exists(path): - return - - if allowed_extensions is not None: - allowed_extensions = set(allowed_extensions) - - items = list(os.walk(path, followlinks=True)) - items = sorted(items, key=lambda x: natural_sort_key(x[0])) - - for root, _, files in items: - for filename in sorted(files, key=natural_sort_key): - if allowed_extensions is not None: - _, ext = os.path.splitext(filename) - if ext not in allowed_extensions: - continue - - if not opts.list_hidden_files and ("/." in root or "\\." in root): - continue - - yield os.path.join(root, filename) - - -def ldm_print(*args, **kwargs): - if opts.hide_ldm_prints: - return - - print(*args, **kwargs) +list_checkpoint_tiles = shared_items.list_checkpoint_tiles +refresh_checkpoints = shared_items.refresh_checkpoints +list_samplers = shared_items.list_samplers +reload_hypernetworks = shared_items.reload_hypernetworks