mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
Merge branch 'AUTOMATIC1111:master' into master
This commit is contained in:
commit
65d88868bf
@ -78,6 +78,8 @@ module.exports = {
|
||||
//extraNetworks.js
|
||||
requestGet: "readonly",
|
||||
popup: "readonly",
|
||||
// profilerVisualization.js
|
||||
createVisualizationTable: "readonly",
|
||||
// from python
|
||||
localization: "readonly",
|
||||
// progrssbar.js
|
||||
|
10
.github/workflows/on_pull_request.yaml
vendored
10
.github/workflows/on_pull_request.yaml
vendored
@ -11,8 +11,8 @@ jobs:
|
||||
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
|
||||
steps:
|
||||
- name: Checkout Code
|
||||
uses: actions/checkout@v3
|
||||
- uses: actions/setup-python@v4
|
||||
uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.11
|
||||
# NB: there's no cache: pip here since we're not installing anything
|
||||
@ -20,7 +20,7 @@ jobs:
|
||||
# not to have GHA download an (at the time of writing) 4 GB cache
|
||||
# of PyTorch and other dependencies.
|
||||
- name: Install Ruff
|
||||
run: pip install ruff==0.1.6
|
||||
run: pip install ruff==0.3.3
|
||||
- name: Run Ruff
|
||||
run: ruff .
|
||||
lint-js:
|
||||
@ -29,9 +29,9 @@ jobs:
|
||||
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
|
||||
steps:
|
||||
- name: Checkout Code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Install Node.js
|
||||
uses: actions/setup-node@v3
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 18
|
||||
- run: npm i --ci
|
||||
|
10
.github/workflows/run_tests.yaml
vendored
10
.github/workflows/run_tests.yaml
vendored
@ -11,9 +11,9 @@ jobs:
|
||||
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
|
||||
steps:
|
||||
- name: Checkout Code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Set up Python 3.10
|
||||
uses: actions/setup-python@v4
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.10.6
|
||||
cache: pip
|
||||
@ -22,7 +22,7 @@ jobs:
|
||||
launch.py
|
||||
- name: Cache models
|
||||
id: cache-models
|
||||
uses: actions/cache@v3
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: models
|
||||
key: "2023-12-30"
|
||||
@ -68,13 +68,13 @@ jobs:
|
||||
python -m coverage report -i
|
||||
python -m coverage html -i
|
||||
- name: Upload main app output
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: output
|
||||
path: output.txt
|
||||
- name: Upload coverage HTML
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
if: always()
|
||||
with:
|
||||
name: htmlcov
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -38,3 +38,4 @@ notification.mp3
|
||||
/package-lock.json
|
||||
/.coverage*
|
||||
/test/test_outputs
|
||||
/cache
|
||||
|
184
CHANGELOG.md
184
CHANGELOG.md
@ -1,4 +1,166 @@
|
||||
## 1.8.0-RC
|
||||
## 1.9.4
|
||||
|
||||
### Bug Fixes:
|
||||
* pin setuptools version to fix the startup error ([#15883](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15883))
|
||||
|
||||
## 1.9.3
|
||||
|
||||
### Bug Fixes:
|
||||
* fix get_crop_region_v2 ([#15594](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15594))
|
||||
|
||||
## 1.9.2
|
||||
|
||||
### Extensions and API:
|
||||
* restore 1.8.0-style naming of scripts
|
||||
|
||||
## 1.9.1
|
||||
|
||||
### Minor:
|
||||
* Add avif support ([#15582](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15582))
|
||||
* Add filename patterns: `[sampler_scheduler]` and `[scheduler]` ([#15581](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15581))
|
||||
|
||||
### Extensions and API:
|
||||
* undo adding scripts to sys.modules
|
||||
* Add schedulers API endpoint ([#15577](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15577))
|
||||
* Remove API upscaling factor limits ([#15560](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15560))
|
||||
|
||||
### Bug Fixes:
|
||||
* Fix images do not match / Coordinate 'right' is less than 'left' ([#15534](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15534))
|
||||
* fix: remove_callbacks_for_function should also remove from the ordered map ([#15533](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15533))
|
||||
* fix x1 upscalers ([#15555](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15555))
|
||||
* Fix cls.__module__ value in extension script ([#15532](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15532))
|
||||
* fix typo in function call (eror -> error) ([#15531](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15531))
|
||||
|
||||
### Other:
|
||||
* Hide 'No Image data blocks found.' message ([#15567](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15567))
|
||||
* Allow webui.sh to be runnable from arbitrary directories containing a .git file ([#15561](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15561))
|
||||
* Compatibility with Debian 11, Fedora 34+ and openSUSE 15.4+ ([#15544](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15544))
|
||||
* numpy DeprecationWarning product -> prod ([#15547](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15547))
|
||||
* get_crop_region_v2 ([#15583](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15583), [#15587](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15587))
|
||||
|
||||
|
||||
## 1.9.0
|
||||
|
||||
### Features:
|
||||
* Make refiner switchover based on model timesteps instead of sampling steps ([#14978](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14978))
|
||||
* add an option to have old-style directory view instead of tree view; stylistic changes for extra network sorting/search controls
|
||||
* add UI for reordering callbacks, support for specifying callback order in extension metadata ([#15205](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15205))
|
||||
* Sgm uniform scheduler for SDXL-Lightning models ([#15325](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15325))
|
||||
* Scheduler selection in main UI ([#15333](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15333), [#15361](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15361), [#15394](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15394))
|
||||
|
||||
### Minor:
|
||||
* "open images directory" button now opens the actual dir ([#14947](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14947))
|
||||
* Support inference with LyCORIS BOFT networks ([#14871](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14871), [#14973](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14973))
|
||||
* make extra network card description plaintext by default, with an option to re-enable HTML as it was
|
||||
* resize handle for extra networks ([#15041](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15041))
|
||||
* cmd args: `--unix-filenames-sanitization` and `--filenames-max-length` ([#15031](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15031))
|
||||
* show extra networks parameters in HTML table rather than raw JSON ([#15131](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15131))
|
||||
* Add DoRA (weight-decompose) support for LoRA/LoHa/LoKr ([#15160](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15160), [#15283](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15283))
|
||||
* Add '--no-prompt-history' cmd args for disable last generation prompt history ([#15189](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15189))
|
||||
* update preview on Replace Preview ([#15201](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15201))
|
||||
* only fetch updates for extensions' active git branches ([#15233](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15233))
|
||||
* put upscale postprocessing UI into an accordion ([#15223](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15223))
|
||||
* Support dragdrop for URLs to read infotext ([#15262](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15262))
|
||||
* use diskcache library for caching ([#15287](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15287), [#15299](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15299))
|
||||
* Allow PNG-RGBA for Extras Tab ([#15334](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15334))
|
||||
* Support cover images embedded in safetensors metadata ([#15319](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15319))
|
||||
* faster interrupt when using NN upscale ([#15380](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15380))
|
||||
* Extras upscaler: an input field to limit maximul side length for the output image ([#15293](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15293), [#15415](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15415), [#15417](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15417), [#15425](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15425))
|
||||
* add an option to hide postprocessing options in Extras tab
|
||||
|
||||
### Extensions and API:
|
||||
* ResizeHandleRow - allow overriden column scale parametr ([#15004](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15004))
|
||||
* call script_callbacks.ui_settings_callback earlier; fix extra-options-section built-in extension killing the ui if using a setting that doesn't exist
|
||||
* make it possible to use zoom.js outside webui context ([#15286](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15286), [#15288](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15288))
|
||||
* allow variants for extension name in metadata.ini ([#15290](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15290))
|
||||
* make reloading UI scripts optional when doing Reload UI, and off by default
|
||||
* put request: gr.Request at start of img2img function similar to txt2img
|
||||
* open_folder as util ([#15442](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15442))
|
||||
* make it possible to import extensions' script files as `import scripts.<filename>` ([#15423](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15423))
|
||||
|
||||
### Performance:
|
||||
* performance optimization for extra networks HTML pages
|
||||
* optimization for extra networks filtering
|
||||
* optimization for extra networks sorting
|
||||
|
||||
### Bug Fixes:
|
||||
* prevent escape button causing an interrupt when no generation has been made yet
|
||||
* [bug] avoid doble upscaling in inpaint ([#14966](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14966))
|
||||
* possible fix for reload button not appearing in some cases for extra networks.
|
||||
* fix: the `split_threshold` parameter does not work when running Split oversized images ([#15006](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15006))
|
||||
* Fix resize-handle visability for vertical layout (mobile) ([#15010](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15010))
|
||||
* register_tmp_file also for mtime ([#15012](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15012))
|
||||
* Protect alphas_cumprod during refiner switchover ([#14979](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14979))
|
||||
* Fix EXIF orientation in API image loading ([#15062](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15062))
|
||||
* Only override emphasis if actually used in prompt ([#15141](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15141))
|
||||
* Fix emphasis infotext missing from `params.txt` ([#15142](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15142))
|
||||
* fix extract_style_text_from_prompt #15132 ([#15135](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15135))
|
||||
* Fix Soft Inpaint for AnimateDiff ([#15148](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15148))
|
||||
* edit-attention: deselect surrounding whitespace ([#15178](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15178))
|
||||
* chore: fix font not loaded ([#15183](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15183))
|
||||
* use natural sort in extra networks when ordering by path
|
||||
* Fix built-in lora system bugs caused by torch.nn.MultiheadAttention ([#15190](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15190))
|
||||
* Avoid error from None in get_learned_conditioning ([#15191](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15191))
|
||||
* Add entry to MassFileLister after writing metadata ([#15199](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15199))
|
||||
* fix issue with Styles when Hires prompt is used ([#15269](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15269), [#15276](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15276))
|
||||
* Strip comments from hires fix prompt ([#15263](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15263))
|
||||
* Make imageviewer event listeners browser consistent ([#15261](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15261))
|
||||
* Fix AttributeError in OFT when trying to get MultiheadAttention weight ([#15260](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15260))
|
||||
* Add missing .mean() back ([#15239](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15239))
|
||||
* fix "Restore progress" button ([#15221](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15221))
|
||||
* fix ui-config for InputAccordion [custom_script_source] ([#15231](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15231))
|
||||
* handle 0 wheel deltaY ([#15268](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15268))
|
||||
* prevent alt menu for firefox ([#15267](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15267))
|
||||
* fix: fix syntax errors ([#15179](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15179))
|
||||
* restore outputs path ([#15307](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15307))
|
||||
* Escape btn_copy_path filename ([#15316](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15316))
|
||||
* Fix extra networks buttons when filename contains an apostrophe ([#15331](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15331))
|
||||
* escape brackets in lora random prompt generator ([#15343](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15343))
|
||||
* fix: Python version check for PyTorch installation compatibility ([#15390](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15390))
|
||||
* fix typo in call_queue.py ([#15386](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15386))
|
||||
* fix: when find already_loaded model, remove loaded by array index ([#15382](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15382))
|
||||
* minor bug fix of sd model memory management ([#15350](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15350))
|
||||
* Fix CodeFormer weight ([#15414](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15414))
|
||||
* Fix: Remove script callbacks in ordered_callbacks_map ([#15428](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15428))
|
||||
* fix limited file write (thanks, Sylwia)
|
||||
* Fix extra-single-image API not doing upscale failed ([#15465](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15465))
|
||||
* error handling paste_field callables ([#15470](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15470))
|
||||
|
||||
### Hardware:
|
||||
* Add training support and change lspci for Ascend NPU ([#14981](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14981))
|
||||
* Update to ROCm5.7 and PyTorch ([#14820](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14820))
|
||||
* Better workaround for Navi1, removing --pre for Navi3 ([#15224](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15224))
|
||||
* Ascend NPU wiki page ([#15228](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15228))
|
||||
|
||||
### Other:
|
||||
* Update comment for Pad prompt/negative prompt v0 to add a warning about truncation, make it override the v1 implementation
|
||||
* support resizable columns for touch (tablets) ([#15002](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15002))
|
||||
* Fix #14591 using translated content to do categories mapping ([#14995](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14995))
|
||||
* Use `absolute` path for normalized filepath ([#15035](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15035))
|
||||
* resizeHandle handle double tap ([#15065](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15065))
|
||||
* --dat-models-path cmd flag ([#15039](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15039))
|
||||
* Add a direct link to the binary release ([#15059](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15059))
|
||||
* upscaler_utils: Reduce logging ([#15084](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15084))
|
||||
* Fix various typos with crate-ci/typos ([#15116](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15116))
|
||||
* fix_jpeg_live_preview ([#15102](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15102))
|
||||
* [alternative fix] can't load webui if selected wrong extra option in ui ([#15121](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15121))
|
||||
* Error handling for unsupported transparency ([#14958](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14958))
|
||||
* Add model description to searched terms ([#15198](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15198))
|
||||
* bump action version ([#15272](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15272))
|
||||
* PEP 604 annotations ([#15259](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15259))
|
||||
* Automatically Set the Scale by value when user selects an Upscale Model ([#15244](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15244))
|
||||
* move postprocessing-for-training into builtin extensions ([#15222](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15222))
|
||||
* type hinting in shared.py ([#15211](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15211))
|
||||
* update ruff to 0.3.3
|
||||
* Update pytorch lightning utilities ([#15310](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15310))
|
||||
* Add Size as an XYZ Grid option ([#15354](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15354))
|
||||
* Use HF_ENDPOINT variable for HuggingFace domain with default ([#15443](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15443))
|
||||
* re-add update_file_entry ([#15446](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15446))
|
||||
* create_infotext allow index and callable, re-work Hires prompt infotext ([#15460](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15460))
|
||||
* update restricted_opts to include more options for --hide-ui-dir-config ([#15492](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15492))
|
||||
|
||||
|
||||
## 1.8.0
|
||||
|
||||
### Features:
|
||||
* Update torch to version 2.1.2
|
||||
@ -14,7 +176,7 @@
|
||||
* Add support for DAT upscaler models ([#14690](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14690), [#15039](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15039))
|
||||
* Extra Networks Tree View ([#14588](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14588), [#14900](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14900))
|
||||
* NPU Support ([#14801](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14801))
|
||||
* Propmpt comments support
|
||||
* Prompt comments support
|
||||
|
||||
### Minor:
|
||||
* Allow pasting in WIDTHxHEIGHT strings into the width/height fields ([#14296](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14296))
|
||||
@ -59,9 +221,9 @@
|
||||
* modules/api/api.py: add api endpoint to refresh embeddings list ([#14715](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14715))
|
||||
* set_named_arg ([#14773](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14773))
|
||||
* add before_token_counter callback and use it for prompt comments
|
||||
* ResizeHandleRow - allow overriden column scale parameter ([#15004](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15004))
|
||||
* ResizeHandleRow - allow overridden column scale parameter ([#15004](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15004))
|
||||
|
||||
### Performance
|
||||
### Performance:
|
||||
* Massive performance improvement for extra networks directories with a huge number of files in them in an attempt to tackle #14507 ([#14528](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14528))
|
||||
* Reduce unnecessary re-indexing extra networks directory ([#14512](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14512))
|
||||
* Avoid unnecessary `isfile`/`exists` calls ([#14527](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14527))
|
||||
@ -101,7 +263,7 @@
|
||||
* Gracefully handle mtime read exception from cache ([#14933](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14933))
|
||||
* Only trigger interrupt on `Esc` when interrupt button visible ([#14932](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14932))
|
||||
* Disable prompt token counters option actually disables token counting rather than just hiding results.
|
||||
* avoid doble upscaling in inpaint ([#14966](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14966))
|
||||
* avoid double upscaling in inpaint ([#14966](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14966))
|
||||
* Fix #14591 using translated content to do categories mapping ([#14995](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14995))
|
||||
* fix: the `split_threshold` parameter does not work when running Split oversized images ([#15006](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15006))
|
||||
* Fix resize-handle for mobile ([#15010](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15010), [#15065](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15065))
|
||||
@ -171,7 +333,7 @@
|
||||
* infotext updates: add option to disregard certain infotext fields, add option to not include VAE in infotext, add explanation to infotext settings page, move some options to infotext settings page
|
||||
* add FP32 fallback support on sd_vae_approx ([#14046](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046))
|
||||
* support XYZ scripts / split hires path from unet ([#14126](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14126))
|
||||
* allow use of mutiple styles csv files ([#14125](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14125))
|
||||
* allow use of multiple styles csv files ([#14125](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14125))
|
||||
* make extra network card description plaintext by default, with an option (Treat card description as HTML) to re-enable HTML as it was (originally by [#13241](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13241))
|
||||
|
||||
### Extensions and API:
|
||||
@ -308,7 +470,7 @@
|
||||
* new samplers: Restart, DPM++ 2M SDE Exponential, DPM++ 2M SDE Heun, DPM++ 2M SDE Heun Karras, DPM++ 2M SDE Heun Exponential, DPM++ 3M SDE, DPM++ 3M SDE Karras, DPM++ 3M SDE Exponential ([#12300](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12300), [#12519](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12519), [#12542](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12542))
|
||||
* rework DDIM, PLMS, UniPC to use CFG denoiser same as in k-diffusion samplers:
|
||||
* makes all of them work with img2img
|
||||
* makes prompt composition posssible (AND)
|
||||
* makes prompt composition possible (AND)
|
||||
* makes them available for SDXL
|
||||
* always show extra networks tabs in the UI ([#11808](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/11808))
|
||||
* use less RAM when creating models ([#11958](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/11958), [#12599](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12599))
|
||||
@ -484,7 +646,7 @@
|
||||
* user metadata system for custom networks
|
||||
* extended Lora metadata editor: set activation text, default weight, view tags, training info
|
||||
* Lora extension rework to include other types of networks (all that were previously handled by LyCORIS extension)
|
||||
* show github stars for extenstions
|
||||
* show github stars for extensions
|
||||
* img2img batch mode can read extra stuff from png info
|
||||
* img2img batch works with subdirectories
|
||||
* hotkeys to move prompt elements: alt+left/right
|
||||
@ -703,7 +865,7 @@
|
||||
* do not wait for Stable Diffusion model to load at startup
|
||||
* add filename patterns: `[denoising]`
|
||||
* directory hiding for extra networks: dirs starting with `.` will hide their cards on extra network tabs unless specifically searched for
|
||||
* LoRA: for the `<...>` text in prompt, use name of LoRA that is in the metdata of the file, if present, instead of filename (both can be used to activate LoRA)
|
||||
* LoRA: for the `<...>` text in prompt, use name of LoRA that is in the metadata of the file, if present, instead of filename (both can be used to activate LoRA)
|
||||
* LoRA: read infotext params from kohya-ss's extension parameters if they are present and if his extension is not active
|
||||
* LoRA: fix some LoRAs not working (ones that have 3x3 convolution layer)
|
||||
* LoRA: add an option to use old method of applying LoRAs (producing same results as with kohya-ss)
|
||||
@ -733,7 +895,7 @@
|
||||
* fix gamepad navigation
|
||||
* make the lightbox fullscreen image function properly
|
||||
* fix squished thumbnails in extras tab
|
||||
* keep "search" filter for extra networks when user refreshes the tab (previously it showed everthing after you refreshed)
|
||||
* keep "search" filter for extra networks when user refreshes the tab (previously it showed everything after you refreshed)
|
||||
* fix webui showing the same image if you configure the generation to always save results into same file
|
||||
* fix bug with upscalers not working properly
|
||||
* fix MPS on PyTorch 2.0.1, Intel Macs
|
||||
@ -751,7 +913,7 @@
|
||||
* switch to PyTorch 2.0.0 (except for AMD GPUs)
|
||||
* visual improvements to custom code scripts
|
||||
* add filename patterns: `[clip_skip]`, `[hasprompt<>]`, `[batch_number]`, `[generation_number]`
|
||||
* add support for saving init images in img2img, and record their hashes in infotext for reproducability
|
||||
* add support for saving init images in img2img, and record their hashes in infotext for reproducibility
|
||||
* automatically select current word when adjusting weight with ctrl+up/down
|
||||
* add dropdowns for X/Y/Z plot
|
||||
* add setting: Stable Diffusion/Random number generator source: makes it possible to make images generated from a given manual seed consistent across different GPUs
|
||||
|
@ -98,6 +98,7 @@ Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-di
|
||||
- [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended)
|
||||
- [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||
- [Intel CPUs, Intel GPUs (both integrated and discrete)](https://github.com/openvinotoolkit/stable-diffusion-webui/wiki/Installation-on-Intel-Silicon) (external wiki page)
|
||||
- [Ascend NPUs](https://github.com/wangshuai09/stable-diffusion-webui/wiki/Install-and-run-on-Ascend-NPUs) (external wiki page)
|
||||
|
||||
Alternatively, use online services (like Google Colab):
|
||||
|
||||
|
5
_typos.toml
Normal file
5
_typos.toml
Normal file
@ -0,0 +1,5 @@
|
||||
[default.extend-words]
|
||||
# Part of "RGBa" (Pillow's pre-multiplied alpha RGB mode)
|
||||
Ba = "Ba"
|
||||
# HSA is something AMD uses for their GPUs
|
||||
HSA = "HSA"
|
@ -301,7 +301,7 @@ class DDPMV1(pl.LightningModule):
|
||||
elif self.parameterization == "x0":
|
||||
target = x_start
|
||||
else:
|
||||
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
||||
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
|
||||
|
||||
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
||||
|
||||
@ -880,7 +880,7 @@ class LatentDiffusionV1(DDPMV1):
|
||||
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
||||
|
||||
if isinstance(cond, dict):
|
||||
# hybrid case, cond is exptected to be a dict
|
||||
# hybrid case, cond is expected to be a dict
|
||||
pass
|
||||
else:
|
||||
if not isinstance(cond, list):
|
||||
@ -916,7 +916,7 @@ class LatentDiffusionV1(DDPMV1):
|
||||
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
||||
|
||||
elif self.cond_stage_key == 'coordinates_bbox':
|
||||
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
||||
assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size'
|
||||
|
||||
# assuming padding of unfold is always 0 and its dilation is always 1
|
||||
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
||||
@ -926,7 +926,7 @@ class LatentDiffusionV1(DDPMV1):
|
||||
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
||||
rescale_latent = 2 ** (num_downs)
|
||||
|
||||
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
||||
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
|
||||
# need to rescale the tl patch coordinates to be in between (0,1)
|
||||
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
||||
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
||||
|
@ -30,7 +30,7 @@ def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
|
||||
In LoRA with Kroneckor Product, first value is a value for weight scale.
|
||||
secon value is a value for weight.
|
||||
|
||||
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
|
||||
Because of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
|
||||
|
||||
examples)
|
||||
factor
|
||||
|
@ -29,7 +29,6 @@ class NetworkOnDisk:
|
||||
|
||||
def read_metadata():
|
||||
metadata = sd_models.read_metadata_from_safetensors(filename)
|
||||
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text
|
||||
|
||||
return metadata
|
||||
|
||||
@ -117,6 +116,12 @@ class NetworkModule:
|
||||
|
||||
if hasattr(self.sd_module, 'weight'):
|
||||
self.shape = self.sd_module.weight.shape
|
||||
elif isinstance(self.sd_module, nn.MultiheadAttention):
|
||||
# For now, only self-attn use Pytorch's MHA
|
||||
# So assume all qkvo proj have same shape
|
||||
self.shape = self.sd_module.out_proj.weight.shape
|
||||
else:
|
||||
self.shape = None
|
||||
|
||||
self.ops = None
|
||||
self.extra_kwargs = {}
|
||||
@ -146,6 +151,9 @@ class NetworkModule:
|
||||
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
|
||||
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
|
||||
|
||||
self.dora_scale = weights.w.get("dora_scale", None)
|
||||
self.dora_norm_dims = len(self.shape) - 1
|
||||
|
||||
def multiplier(self):
|
||||
if 'transformer' in self.sd_key[:20]:
|
||||
return self.network.te_multiplier
|
||||
@ -160,6 +168,27 @@ class NetworkModule:
|
||||
|
||||
return 1.0
|
||||
|
||||
def apply_weight_decompose(self, updown, orig_weight):
|
||||
# Match the device/dtype
|
||||
orig_weight = orig_weight.to(updown.dtype)
|
||||
dora_scale = self.dora_scale.to(device=orig_weight.device, dtype=updown.dtype)
|
||||
updown = updown.to(orig_weight.device)
|
||||
|
||||
merged_scale1 = updown + orig_weight
|
||||
merged_scale1_norm = (
|
||||
merged_scale1.transpose(0, 1)
|
||||
.reshape(merged_scale1.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(merged_scale1.shape[1], *[1] * self.dora_norm_dims)
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
dora_merged = (
|
||||
merged_scale1 * (dora_scale / merged_scale1_norm)
|
||||
)
|
||||
final_updown = dora_merged - orig_weight
|
||||
return final_updown
|
||||
|
||||
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
||||
if self.bias is not None:
|
||||
updown = updown.reshape(self.bias.shape)
|
||||
@ -175,6 +204,9 @@ class NetworkModule:
|
||||
if ex_bias is not None:
|
||||
ex_bias = ex_bias * self.multiplier()
|
||||
|
||||
if self.dora_scale is not None:
|
||||
updown = self.apply_weight_decompose(updown, orig_weight)
|
||||
|
||||
return updown * self.calc_scale() * self.multiplier(), ex_bias
|
||||
|
||||
def calc_updown(self, target):
|
||||
|
@ -36,13 +36,6 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
# self.alpha is unused
|
||||
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
|
||||
|
||||
# LyCORIS BOFT
|
||||
if self.oft_blocks.dim() == 4:
|
||||
self.is_boft = True
|
||||
self.rescale = weights.w.get('rescale', None)
|
||||
if self.rescale is not None:
|
||||
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
|
||||
|
||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
|
||||
@ -54,6 +47,13 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
elif is_other_linear:
|
||||
self.out_dim = self.sd_module.embed_dim
|
||||
|
||||
# LyCORIS BOFT
|
||||
if self.oft_blocks.dim() == 4:
|
||||
self.is_boft = True
|
||||
self.rescale = weights.w.get('rescale', None)
|
||||
if self.rescale is not None and not is_other_linear:
|
||||
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))
|
||||
|
||||
self.num_blocks = self.dim
|
||||
self.block_size = self.out_dim // self.dim
|
||||
self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim
|
||||
|
@ -355,7 +355,7 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
|
||||
"""
|
||||
Applies the currently selected set of networks to the weights of torch layer self.
|
||||
If weights already have this particular set of networks applied, does nothing.
|
||||
If not, restores orginal weights from backup and alters weights according to networks.
|
||||
If not, restores original weights from backup and alters weights according to networks.
|
||||
"""
|
||||
|
||||
network_layer_name = getattr(self, 'network_layer_name', None)
|
||||
@ -429,9 +429,12 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
|
||||
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
||||
try:
|
||||
with torch.no_grad():
|
||||
updown_q, _ = module_q.calc_updown(self.in_proj_weight)
|
||||
updown_k, _ = module_k.calc_updown(self.in_proj_weight)
|
||||
updown_v, _ = module_v.calc_updown(self.in_proj_weight)
|
||||
# Send "real" orig_weight into MHA's lora module
|
||||
qw, kw, vw = self.in_proj_weight.chunk(3, 0)
|
||||
updown_q, _ = module_q.calc_updown(qw)
|
||||
updown_k, _ = module_k.calc_updown(kw)
|
||||
updown_v, _ = module_v.calc_updown(vw)
|
||||
del qw, kw, vw
|
||||
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
||||
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
|
||||
|
||||
|
@ -149,6 +149,8 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
|
||||
v = random.random() * max_count
|
||||
if count > v:
|
||||
for x in "({[]})":
|
||||
tag = tag.replace(x, '\\' + x)
|
||||
res.append(tag)
|
||||
|
||||
return ", ".join(sorted(res))
|
||||
|
@ -31,7 +31,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
||||
"name": name,
|
||||
"filename": lora_on_disk.filename,
|
||||
"shorthash": lora_on_disk.shorthash,
|
||||
"preview": self.find_preview(path),
|
||||
"preview": self.find_preview(path) or self.find_embedded_preview(path, name, lora_on_disk.metadata),
|
||||
"description": self.find_description(path),
|
||||
"search_terms": search_terms,
|
||||
"local_preview": f"{path}.{shared.opts.samples_format}",
|
||||
|
@ -29,6 +29,7 @@ onUiLoaded(async() => {
|
||||
});
|
||||
|
||||
function getActiveTab(elements, all = false) {
|
||||
if (!elements.img2imgTabs) return null;
|
||||
const tabs = elements.img2imgTabs.querySelectorAll("button");
|
||||
|
||||
if (all) return tabs;
|
||||
@ -43,6 +44,7 @@ onUiLoaded(async() => {
|
||||
// Get tab ID
|
||||
function getTabId(elements) {
|
||||
const activeTab = getActiveTab(elements);
|
||||
if (!activeTab) return null;
|
||||
return tabNameToElementId[activeTab.innerText];
|
||||
}
|
||||
|
||||
@ -252,6 +254,7 @@ onUiLoaded(async() => {
|
||||
let isMoving = false;
|
||||
let mouseX, mouseY;
|
||||
let activeElement;
|
||||
let interactedWithAltKey = false;
|
||||
|
||||
const elements = Object.fromEntries(
|
||||
Object.keys(elementIDs).map(id => [
|
||||
@ -277,7 +280,7 @@ onUiLoaded(async() => {
|
||||
const targetElement = gradioApp().querySelector(elemId);
|
||||
|
||||
if (!targetElement) {
|
||||
console.log("Element not found");
|
||||
console.log("Element not found", elemId);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -292,7 +295,7 @@ onUiLoaded(async() => {
|
||||
|
||||
// Create tooltip
|
||||
function createTooltip() {
|
||||
const toolTipElemnt =
|
||||
const toolTipElement =
|
||||
targetElement.querySelector(".image-container");
|
||||
const tooltip = document.createElement("div");
|
||||
tooltip.className = "canvas-tooltip";
|
||||
@ -355,7 +358,7 @@ onUiLoaded(async() => {
|
||||
tooltip.appendChild(tooltipContent);
|
||||
|
||||
// Add a hint element to the target element
|
||||
toolTipElemnt.appendChild(tooltip);
|
||||
toolTipElement.appendChild(tooltip);
|
||||
}
|
||||
|
||||
//Show tool tip if setting enable
|
||||
@ -365,9 +368,9 @@ onUiLoaded(async() => {
|
||||
|
||||
// In the course of research, it was found that the tag img is very harmful when zooming and creates white canvases. This hack allows you to almost never think about this problem, it has no effect on webui.
|
||||
function fixCanvas() {
|
||||
const activeTab = getActiveTab(elements).textContent.trim();
|
||||
const activeTab = getActiveTab(elements)?.textContent.trim();
|
||||
|
||||
if (activeTab !== "img2img") {
|
||||
if (activeTab && activeTab !== "img2img") {
|
||||
const img = targetElement.querySelector(`${elemId} img`);
|
||||
|
||||
if (img && img.style.display !== "none") {
|
||||
@ -508,6 +511,10 @@ onUiLoaded(async() => {
|
||||
if (isModifierKey(e, hotkeysConfig.canvas_hotkey_zoom)) {
|
||||
e.preventDefault();
|
||||
|
||||
if (hotkeysConfig.canvas_hotkey_zoom === "Alt") {
|
||||
interactedWithAltKey = true;
|
||||
}
|
||||
|
||||
let zoomPosX, zoomPosY;
|
||||
let delta = 0.2;
|
||||
if (elemData[elemId].zoomLevel > 7) {
|
||||
@ -783,23 +790,29 @@ onUiLoaded(async() => {
|
||||
targetElement.addEventListener("mouseleave", handleMouseLeave);
|
||||
|
||||
// Reset zoom when click on another tab
|
||||
elements.img2imgTabs.addEventListener("click", resetZoom);
|
||||
elements.img2imgTabs.addEventListener("click", () => {
|
||||
// targetElement.style.width = "";
|
||||
if (parseInt(targetElement.style.width) > 865) {
|
||||
setTimeout(fitToElement, 0);
|
||||
}
|
||||
});
|
||||
if (elements.img2imgTabs) {
|
||||
elements.img2imgTabs.addEventListener("click", resetZoom);
|
||||
elements.img2imgTabs.addEventListener("click", () => {
|
||||
// targetElement.style.width = "";
|
||||
if (parseInt(targetElement.style.width) > 865) {
|
||||
setTimeout(fitToElement, 0);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
targetElement.addEventListener("wheel", e => {
|
||||
// change zoom level
|
||||
const operation = e.deltaY > 0 ? "-" : "+";
|
||||
const operation = (e.deltaY || -e.wheelDelta) > 0 ? "-" : "+";
|
||||
changeZoomLevel(operation, e);
|
||||
|
||||
// Handle brush size adjustment with ctrl key pressed
|
||||
if (isModifierKey(e, hotkeysConfig.canvas_hotkey_adjust)) {
|
||||
e.preventDefault();
|
||||
|
||||
if (hotkeysConfig.canvas_hotkey_adjust === "Alt") {
|
||||
interactedWithAltKey = true;
|
||||
}
|
||||
|
||||
// Increase or decrease brush size based on scroll direction
|
||||
adjustBrushSize(elemId, e.deltaY);
|
||||
}
|
||||
@ -839,6 +852,20 @@ onUiLoaded(async() => {
|
||||
document.addEventListener("keydown", handleMoveKeyDown);
|
||||
document.addEventListener("keyup", handleMoveKeyUp);
|
||||
|
||||
|
||||
// Prevent firefox from opening main menu when alt is used as a hotkey for zoom or brush size
|
||||
function handleAltKeyUp(e) {
|
||||
if (e.key !== "Alt" || !interactedWithAltKey) {
|
||||
return;
|
||||
}
|
||||
|
||||
e.preventDefault();
|
||||
interactedWithAltKey = false;
|
||||
}
|
||||
|
||||
document.addEventListener("keyup", handleAltKeyUp);
|
||||
|
||||
|
||||
// Detect zoom level and update the pan speed.
|
||||
function updatePanPosition(movementX, movementY) {
|
||||
let panSpeed = 2;
|
||||
|
@ -8,8 +8,8 @@ shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas
|
||||
"canvas_hotkey_grow_brush": shared.OptionInfo("W", "Enlarge the brush size"),
|
||||
"canvas_hotkey_move": shared.OptionInfo("F", "Moving the canvas").info("To work correctly in firefox, turn off 'Automatically search the page text when typing' in the browser settings"),
|
||||
"canvas_hotkey_fullscreen": shared.OptionInfo("S", "Fullscreen Mode, maximizes the picture so that it fits into the screen and stretches it to its full width "),
|
||||
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
|
||||
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"),
|
||||
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas position"),
|
||||
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, needed for testing"),
|
||||
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
|
||||
"canvas_auto_expand": shared.OptionInfo(True, "Automatically expands an image that does not fit completely in the canvas area, similar to manually pressing the S and R buttons"),
|
||||
"canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
|
||||
|
@ -1,7 +1,7 @@
|
||||
import math
|
||||
|
||||
import gradio as gr
|
||||
from modules import scripts, shared, ui_components, ui_settings, infotext_utils
|
||||
from modules import scripts, shared, ui_components, ui_settings, infotext_utils, errors
|
||||
from modules.ui_components import FormColumn
|
||||
|
||||
|
||||
@ -42,7 +42,11 @@ class ExtraOptionsSection(scripts.Script):
|
||||
setting_name = extra_options[index]
|
||||
|
||||
with FormColumn():
|
||||
comp = ui_settings.create_setting_component(setting_name)
|
||||
try:
|
||||
comp = ui_settings.create_setting_component(setting_name)
|
||||
except KeyError:
|
||||
errors.report(f"Can't add extra options for {setting_name} in ui")
|
||||
continue
|
||||
|
||||
self.comps.append(comp)
|
||||
self.setting_names.append(setting_name)
|
||||
|
@ -57,10 +57,14 @@ def latent_blend(settings, a, b, t):
|
||||
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
# [4][w][h] to [1][4][w][h]
|
||||
t2 = t.unsqueeze(0)
|
||||
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
|
||||
t3 = t[0].unsqueeze(0).unsqueeze(0)
|
||||
if len(t.shape) == 3:
|
||||
# [4][w][h] to [1][4][w][h]
|
||||
t2 = t.unsqueeze(0)
|
||||
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
|
||||
t3 = t[0].unsqueeze(0).unsqueeze(0)
|
||||
else:
|
||||
t2 = t
|
||||
t3 = t[:, 0][:, None]
|
||||
|
||||
one_minus_t2 = 1 - t2
|
||||
one_minus_t3 = 1 - t3
|
||||
@ -104,7 +108,7 @@ def latent_blend(settings, a, b, t):
|
||||
|
||||
def get_modified_nmask(settings, nmask, sigma):
|
||||
"""
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlayed
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlaid
|
||||
to a mask that is scaled according to the denoising strength for this step.
|
||||
|
||||
Where:
|
||||
@ -135,7 +139,10 @@ def apply_adaptive_masks(
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
|
||||
latent_mask = nmask[0].float()
|
||||
if len(nmask.shape) == 3:
|
||||
latent_mask = nmask[0].float()
|
||||
else:
|
||||
latent_mask = nmask[:, 0].float()
|
||||
# convert the original mask into a form we use to scale distances for thresholding
|
||||
mask_scalar = 1 - (torch.clamp(latent_mask, min=0, max=1) ** (settings.mask_blend_scale / 2))
|
||||
mask_scalar = (0.5 * (1 - settings.composite_mask_influence)
|
||||
@ -157,7 +164,14 @@ def apply_adaptive_masks(
|
||||
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
||||
|
||||
# The distance at which opacity of original decreases to 50%
|
||||
half_weighted_distance = settings.composite_difference_threshold * mask_scalar
|
||||
if len(mask_scalar.shape) == 3:
|
||||
if mask_scalar.shape[0] > i:
|
||||
half_weighted_distance = settings.composite_difference_threshold * mask_scalar[i]
|
||||
else:
|
||||
half_weighted_distance = settings.composite_difference_threshold * mask_scalar[0]
|
||||
else:
|
||||
half_weighted_distance = settings.composite_difference_threshold * mask_scalar
|
||||
|
||||
converted_mask = converted_mask / half_weighted_distance
|
||||
|
||||
converted_mask = 1 / (1 + converted_mask ** settings.composite_difference_contrast)
|
||||
|
@ -1,5 +1,5 @@
|
||||
<div class="copy-path-button card-button"
|
||||
title="Copy path to clipboard"
|
||||
onclick="extraNetworksCopyCardPath(event, '{filename}')"
|
||||
onclick="extraNetworksCopyCardPath(event)"
|
||||
data-clipboard-text="{filename}">
|
||||
</div>
|
@ -1,4 +1,4 @@
|
||||
<div class="edit-button card-button"
|
||||
title="Edit metadata"
|
||||
onclick="extraNetworksEditUserMetadata(event, '{tabname}', '{extra_networks_tabname}', '{name}')">
|
||||
onclick="extraNetworksEditUserMetadata(event, '{tabname}', '{extra_networks_tabname}')">
|
||||
</div>
|
@ -1,4 +1,4 @@
|
||||
<div class="metadata-button card-button"
|
||||
title="Show internal metadata"
|
||||
onclick="extraNetworksRequestMetadata(event, '{extra_networks_tabname}', '{name}')">
|
||||
onclick="extraNetworksRequestMetadata(event, '{extra_networks_tabname}')">
|
||||
</div>
|
8
html/extra-networks-pane-dirs.html
Normal file
8
html/extra-networks-pane-dirs.html
Normal file
@ -0,0 +1,8 @@
|
||||
<div class="extra-network-pane-content-dirs">
|
||||
<div id='{tabname}_{extra_networks_tabname}_dirs' class='extra-network-dirs'>
|
||||
{dirs_html}
|
||||
</div>
|
||||
<div id='{tabname}_{extra_networks_tabname}_cards' class='extra-network-cards'>
|
||||
{items_html}
|
||||
</div>
|
||||
</div>
|
8
html/extra-networks-pane-tree.html
Normal file
8
html/extra-networks-pane-tree.html
Normal file
@ -0,0 +1,8 @@
|
||||
<div class="extra-network-pane-content-tree resize-handle-row">
|
||||
<div id='{tabname}_{extra_networks_tabname}_tree' class='extra-network-tree' style='flex-basis: {extra_networks_tree_view_default_width}px'>
|
||||
{tree_html}
|
||||
</div>
|
||||
<div id='{tabname}_{extra_networks_tabname}_cards' class='extra-network-cards' style='flex-grow: 1;'>
|
||||
{items_html}
|
||||
</div>
|
||||
</div>
|
@ -1,23 +1,53 @@
|
||||
<div id='{tabname}_{extra_networks_tabname}_pane' class='extra-network-pane'>
|
||||
<div id='{tabname}_{extra_networks_tabname}_pane' class='extra-network-pane {tree_view_div_default_display_class}'>
|
||||
<div class="extra-network-control" id="{tabname}_{extra_networks_tabname}_controls" style="display:none" >
|
||||
<div class="extra-network-control--search">
|
||||
<input
|
||||
id="{tabname}_{extra_networks_tabname}_extra_search"
|
||||
class="extra-network-control--search-text"
|
||||
type="search"
|
||||
placeholder="Filter files"
|
||||
placeholder="Search"
|
||||
>
|
||||
</div>
|
||||
|
||||
<small>Sort: </small>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_sort"
|
||||
class="extra-network-control--sort"
|
||||
data-sortmode="{data_sortmode}"
|
||||
data-sortkey="{data_sortkey}"
|
||||
id="{tabname}_{extra_networks_tabname}_extra_sort_path"
|
||||
class="extra-network-control--sort{sort_path_active}"
|
||||
data-sortkey="default"
|
||||
title="Sort by path"
|
||||
onclick="extraNetworksControlSortOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--sort-icon"></i>
|
||||
<i class="extra-network-control--icon extra-network-control--sort-icon"></i>
|
||||
</div>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_sort_name"
|
||||
class="extra-network-control--sort{sort_name_active}"
|
||||
data-sortkey="name"
|
||||
title="Sort by name"
|
||||
onclick="extraNetworksControlSortOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--icon extra-network-control--sort-icon"></i>
|
||||
</div>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_sort_date_created"
|
||||
class="extra-network-control--sort{sort_date_created_active}"
|
||||
data-sortkey="date_created"
|
||||
title="Sort by date created"
|
||||
onclick="extraNetworksControlSortOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--icon extra-network-control--sort-icon"></i>
|
||||
</div>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_sort_date_modified"
|
||||
class="extra-network-control--sort{sort_date_modified_active}"
|
||||
data-sortkey="date_modified"
|
||||
title="Sort by date modified"
|
||||
onclick="extraNetworksControlSortOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--icon extra-network-control--sort-icon"></i>
|
||||
</div>
|
||||
|
||||
<small> </small>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_sort_dir"
|
||||
class="extra-network-control--sort-dir"
|
||||
@ -25,15 +55,18 @@
|
||||
title="Sort ascending"
|
||||
onclick="extraNetworksControlSortDirOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--sort-dir-icon"></i>
|
||||
<i class="extra-network-control--icon extra-network-control--sort-dir-icon"></i>
|
||||
</div>
|
||||
|
||||
|
||||
<small> </small>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_tree_view"
|
||||
class="extra-network-control--tree-view {tree_view_btn_extra_class}"
|
||||
title="Enable Tree View"
|
||||
onclick="extraNetworksControlTreeViewOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--tree-view-icon"></i>
|
||||
<i class="extra-network-control--icon extra-network-control--tree-view-icon"></i>
|
||||
</div>
|
||||
<div
|
||||
id="{tabname}_{extra_networks_tabname}_extra_refresh"
|
||||
@ -41,15 +74,8 @@
|
||||
title="Refresh page"
|
||||
onclick="extraNetworksControlRefreshOnClick(event, '{tabname}', '{extra_networks_tabname}');"
|
||||
>
|
||||
<i class="extra-network-control--refresh-icon"></i>
|
||||
</div>
|
||||
</div>
|
||||
<div class="extra-network-pane-content">
|
||||
<div id='{tabname}_{extra_networks_tabname}_tree' class='extra-network-tree {tree_view_div_extra_class}'>
|
||||
{tree_html}
|
||||
</div>
|
||||
<div id='{tabname}_{extra_networks_tabname}_cards' class='extra-network-cards'>
|
||||
{items_html}
|
||||
<i class="extra-network-control--icon extra-network-control--refresh-icon"></i>
|
||||
</div>
|
||||
</div>
|
||||
{pane_content}
|
||||
</div>
|
@ -50,17 +50,17 @@ function dimensionChange(e, is_width, is_height) {
|
||||
var scaledx = targetElement.naturalWidth * viewportscale;
|
||||
var scaledy = targetElement.naturalHeight * viewportscale;
|
||||
|
||||
var cleintRectTop = (viewportOffset.top + window.scrollY);
|
||||
var cleintRectLeft = (viewportOffset.left + window.scrollX);
|
||||
var cleintRectCentreY = cleintRectTop + (targetElement.clientHeight / 2);
|
||||
var cleintRectCentreX = cleintRectLeft + (targetElement.clientWidth / 2);
|
||||
var clientRectTop = (viewportOffset.top + window.scrollY);
|
||||
var clientRectLeft = (viewportOffset.left + window.scrollX);
|
||||
var clientRectCentreY = clientRectTop + (targetElement.clientHeight / 2);
|
||||
var clientRectCentreX = clientRectLeft + (targetElement.clientWidth / 2);
|
||||
|
||||
var arscale = Math.min(scaledx / currentWidth, scaledy / currentHeight);
|
||||
var arscaledx = currentWidth * arscale;
|
||||
var arscaledy = currentHeight * arscale;
|
||||
|
||||
var arRectTop = cleintRectCentreY - (arscaledy / 2);
|
||||
var arRectLeft = cleintRectCentreX - (arscaledx / 2);
|
||||
var arRectTop = clientRectCentreY - (arscaledy / 2);
|
||||
var arRectLeft = clientRectCentreX - (arscaledx / 2);
|
||||
var arRectWidth = arscaledx;
|
||||
var arRectHeight = arscaledy;
|
||||
|
||||
|
27
javascript/dragdrop.js
vendored
27
javascript/dragdrop.js
vendored
@ -74,22 +74,39 @@ window.document.addEventListener('dragover', e => {
|
||||
e.dataTransfer.dropEffect = 'copy';
|
||||
});
|
||||
|
||||
window.document.addEventListener('drop', e => {
|
||||
window.document.addEventListener('drop', async e => {
|
||||
const target = e.composedPath()[0];
|
||||
if (!eventHasFiles(e)) return;
|
||||
const url = e.dataTransfer.getData('text/uri-list') || e.dataTransfer.getData('text/plain');
|
||||
if (!eventHasFiles(e) && !url) return;
|
||||
|
||||
if (dragDropTargetIsPrompt(target)) {
|
||||
e.stopPropagation();
|
||||
e.preventDefault();
|
||||
|
||||
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
|
||||
const isImg2img = get_tab_index('tabs') == 1;
|
||||
let prompt_image_target = isImg2img ? "img2img_prompt_image" : "txt2img_prompt_image";
|
||||
|
||||
const imgParent = gradioApp().getElementById(prompt_target);
|
||||
const imgParent = gradioApp().getElementById(prompt_image_target);
|
||||
const files = e.dataTransfer.files;
|
||||
const fileInput = imgParent.querySelector('input[type="file"]');
|
||||
if (fileInput) {
|
||||
if (eventHasFiles(e) && fileInput) {
|
||||
fileInput.files = files;
|
||||
fileInput.dispatchEvent(new Event('change'));
|
||||
} else if (url) {
|
||||
try {
|
||||
const request = await fetch(url);
|
||||
if (!request.ok) {
|
||||
console.error('Error fetching URL:', url, request.status);
|
||||
return;
|
||||
}
|
||||
const data = new DataTransfer();
|
||||
data.items.add(new File([await request.blob()], 'image.png'));
|
||||
fileInput.files = data.files;
|
||||
fileInput.dispatchEvent(new Event('change'));
|
||||
} catch (error) {
|
||||
console.error('Error fetching URL:', url, error);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -64,6 +64,14 @@ function keyupEditAttention(event) {
|
||||
selectionEnd++;
|
||||
}
|
||||
|
||||
// deselect surrounding whitespace
|
||||
while (text[selectionStart] == " " && selectionStart < selectionEnd) {
|
||||
selectionStart++;
|
||||
}
|
||||
while (text[selectionEnd - 1] == " " && selectionEnd > selectionStart) {
|
||||
selectionEnd--;
|
||||
}
|
||||
|
||||
target.setSelectionRange(selectionStart, selectionEnd);
|
||||
return true;
|
||||
}
|
||||
|
@ -39,12 +39,12 @@ function setupExtraNetworksForTab(tabname) {
|
||||
// tabname_full = {tabname}_{extra_networks_tabname}
|
||||
var tabname_full = elem.id;
|
||||
var search = gradioApp().querySelector("#" + tabname_full + "_extra_search");
|
||||
var sort_mode = gradioApp().querySelector("#" + tabname_full + "_extra_sort");
|
||||
var sort_dir = gradioApp().querySelector("#" + tabname_full + "_extra_sort_dir");
|
||||
var refresh = gradioApp().querySelector("#" + tabname_full + "_extra_refresh");
|
||||
var currentSort = '';
|
||||
|
||||
// If any of the buttons above don't exist, we want to skip this iteration of the loop.
|
||||
if (!search || !sort_mode || !sort_dir || !refresh) {
|
||||
if (!search || !sort_dir || !refresh) {
|
||||
return; // `return` is equivalent of `continue` but for forEach loops.
|
||||
}
|
||||
|
||||
@ -52,7 +52,7 @@ function setupExtraNetworksForTab(tabname) {
|
||||
var searchTerm = search.value.toLowerCase();
|
||||
gradioApp().querySelectorAll('#' + tabname + '_extra_tabs div.card').forEach(function(elem) {
|
||||
var searchOnly = elem.querySelector('.search_only');
|
||||
var text = Array.prototype.map.call(elem.querySelectorAll('.search_terms'), function(t) {
|
||||
var text = Array.prototype.map.call(elem.querySelectorAll('.search_terms, .description'), function(t) {
|
||||
return t.textContent.toLowerCase();
|
||||
}).join(" ");
|
||||
|
||||
@ -71,42 +71,46 @@ function setupExtraNetworksForTab(tabname) {
|
||||
};
|
||||
|
||||
var applySort = function(force) {
|
||||
var cards = gradioApp().querySelectorAll('#' + tabname + '_extra_tabs div.card');
|
||||
var cards = gradioApp().querySelectorAll('#' + tabname_full + ' div.card');
|
||||
var parent = gradioApp().querySelector('#' + tabname_full + "_cards");
|
||||
var reverse = sort_dir.dataset.sortdir == "Descending";
|
||||
var sortKey = sort_mode.dataset.sortmode.toLowerCase().replace("sort", "").replaceAll(" ", "_").replace(/_+$/, "").trim() || "name";
|
||||
sortKey = "sort" + sortKey.charAt(0).toUpperCase() + sortKey.slice(1);
|
||||
var sortKeyStore = sortKey + "-" + (reverse ? "Descending" : "Ascending") + "-" + cards.length;
|
||||
var activeSearchElem = gradioApp().querySelector('#' + tabname_full + "_controls .extra-network-control--sort.extra-network-control--enabled");
|
||||
var sortKey = activeSearchElem ? activeSearchElem.dataset.sortkey : "default";
|
||||
var sortKeyDataField = "sort" + sortKey.charAt(0).toUpperCase() + sortKey.slice(1);
|
||||
var sortKeyStore = sortKey + "-" + sort_dir.dataset.sortdir + "-" + cards.length;
|
||||
|
||||
if (sortKeyStore == sort_mode.dataset.sortkey && !force) {
|
||||
if (sortKeyStore == currentSort && !force) {
|
||||
return;
|
||||
}
|
||||
sort_mode.dataset.sortkey = sortKeyStore;
|
||||
currentSort = sortKeyStore;
|
||||
|
||||
cards.forEach(function(card) {
|
||||
card.originalParentElement = card.parentElement;
|
||||
});
|
||||
var sortedCards = Array.from(cards);
|
||||
sortedCards.sort(function(cardA, cardB) {
|
||||
var a = cardA.dataset[sortKey];
|
||||
var b = cardB.dataset[sortKey];
|
||||
var a = cardA.dataset[sortKeyDataField];
|
||||
var b = cardB.dataset[sortKeyDataField];
|
||||
if (!isNaN(a) && !isNaN(b)) {
|
||||
return parseInt(a) - parseInt(b);
|
||||
}
|
||||
|
||||
return (a < b ? -1 : (a > b ? 1 : 0));
|
||||
});
|
||||
|
||||
if (reverse) {
|
||||
sortedCards.reverse();
|
||||
}
|
||||
cards.forEach(function(card) {
|
||||
card.remove();
|
||||
});
|
||||
|
||||
parent.innerHTML = '';
|
||||
|
||||
var frag = document.createDocumentFragment();
|
||||
sortedCards.forEach(function(card) {
|
||||
card.originalParentElement.appendChild(card);
|
||||
frag.appendChild(card);
|
||||
});
|
||||
parent.appendChild(frag);
|
||||
};
|
||||
|
||||
search.addEventListener("input", applyFilter);
|
||||
search.addEventListener("input", function() {
|
||||
applyFilter();
|
||||
});
|
||||
applySort();
|
||||
applyFilter();
|
||||
extraNetworksApplySort[tabname_full] = applySort;
|
||||
@ -272,6 +276,15 @@ function saveCardPreview(event, tabname, filename) {
|
||||
event.preventDefault();
|
||||
}
|
||||
|
||||
function extraNetworksSearchButton(tabname, extra_networks_tabname, event) {
|
||||
var searchTextarea = gradioApp().querySelector("#" + tabname + "_" + extra_networks_tabname + "_extra_search");
|
||||
var button = event.target;
|
||||
var text = button.classList.contains("search-all") ? "" : button.textContent.trim();
|
||||
|
||||
searchTextarea.value = text;
|
||||
updateInput(searchTextarea);
|
||||
}
|
||||
|
||||
function extraNetworksTreeProcessFileClick(event, btn, tabname, extra_networks_tabname) {
|
||||
/**
|
||||
* Processes `onclick` events when user clicks on files in tree.
|
||||
@ -290,7 +303,7 @@ function extraNetworksTreeProcessDirectoryClick(event, btn, tabname, extra_netwo
|
||||
* Processes `onclick` events when user clicks on directories in tree.
|
||||
*
|
||||
* Here is how the tree reacts to clicks for various states:
|
||||
* unselected unopened directory: Diretory is selected and expanded.
|
||||
* unselected unopened directory: Directory is selected and expanded.
|
||||
* unselected opened directory: Directory is selected.
|
||||
* selected opened directory: Directory is collapsed and deselected.
|
||||
* chevron is clicked: Directory is expanded or collapsed. Selected state unchanged.
|
||||
@ -383,36 +396,17 @@ function extraNetworksTreeOnClick(event, tabname, extra_networks_tabname) {
|
||||
}
|
||||
|
||||
function extraNetworksControlSortOnClick(event, tabname, extra_networks_tabname) {
|
||||
/**
|
||||
* Handles `onclick` events for the Sort Mode button.
|
||||
*
|
||||
* Modifies the data attributes of the Sort Mode button to cycle between
|
||||
* various sorting modes.
|
||||
*
|
||||
* @param event The generated event.
|
||||
* @param tabname The name of the active tab in the sd webui. Ex: txt2img, img2img, etc.
|
||||
* @param extra_networks_tabname The id of the active extraNetworks tab. Ex: lora, checkpoints, etc.
|
||||
*/
|
||||
var curr_mode = event.currentTarget.dataset.sortmode;
|
||||
var el_sort_dir = gradioApp().querySelector("#" + tabname + "_" + extra_networks_tabname + "_extra_sort_dir");
|
||||
var sort_dir = el_sort_dir.dataset.sortdir;
|
||||
if (curr_mode == "path") {
|
||||
event.currentTarget.dataset.sortmode = "name";
|
||||
event.currentTarget.dataset.sortkey = "sortName-" + sort_dir + "-640";
|
||||
event.currentTarget.setAttribute("title", "Sort by filename");
|
||||
} else if (curr_mode == "name") {
|
||||
event.currentTarget.dataset.sortmode = "date_created";
|
||||
event.currentTarget.dataset.sortkey = "sortDate_created-" + sort_dir + "-640";
|
||||
event.currentTarget.setAttribute("title", "Sort by date created");
|
||||
} else if (curr_mode == "date_created") {
|
||||
event.currentTarget.dataset.sortmode = "date_modified";
|
||||
event.currentTarget.dataset.sortkey = "sortDate_modified-" + sort_dir + "-640";
|
||||
event.currentTarget.setAttribute("title", "Sort by date modified");
|
||||
} else {
|
||||
event.currentTarget.dataset.sortmode = "path";
|
||||
event.currentTarget.dataset.sortkey = "sortPath-" + sort_dir + "-640";
|
||||
event.currentTarget.setAttribute("title", "Sort by path");
|
||||
}
|
||||
/** Handles `onclick` events for Sort Mode buttons. */
|
||||
|
||||
var self = event.currentTarget;
|
||||
var parent = event.currentTarget.parentElement;
|
||||
|
||||
parent.querySelectorAll('.extra-network-control--sort').forEach(function(x) {
|
||||
x.classList.remove('extra-network-control--enabled');
|
||||
});
|
||||
|
||||
self.classList.add('extra-network-control--enabled');
|
||||
|
||||
applyExtraNetworkSort(tabname + "_" + extra_networks_tabname);
|
||||
}
|
||||
|
||||
@ -447,8 +441,12 @@ function extraNetworksControlTreeViewOnClick(event, tabname, extra_networks_tabn
|
||||
* @param tabname The name of the active tab in the sd webui. Ex: txt2img, img2img, etc.
|
||||
* @param extra_networks_tabname The id of the active extraNetworks tab. Ex: lora, checkpoints, etc.
|
||||
*/
|
||||
gradioApp().getElementById(tabname + "_" + extra_networks_tabname + "_tree").classList.toggle("hidden");
|
||||
event.currentTarget.classList.toggle("extra-network-control--enabled");
|
||||
var button = event.currentTarget;
|
||||
button.classList.toggle("extra-network-control--enabled");
|
||||
var show = !button.classList.contains("extra-network-control--enabled");
|
||||
|
||||
var pane = gradioApp().getElementById(tabname + "_" + extra_networks_tabname + "_pane");
|
||||
pane.classList.toggle("extra-network-dirs-hidden", show);
|
||||
}
|
||||
|
||||
function extraNetworksControlRefreshOnClick(event, tabname, extra_networks_tabname) {
|
||||
@ -509,12 +507,76 @@ function popupId(id) {
|
||||
popup(storedPopupIds[id]);
|
||||
}
|
||||
|
||||
function extraNetworksFlattenMetadata(obj) {
|
||||
const result = {};
|
||||
|
||||
// Convert any stringified JSON objects to actual objects
|
||||
for (const key of Object.keys(obj)) {
|
||||
if (typeof obj[key] === 'string') {
|
||||
try {
|
||||
const parsed = JSON.parse(obj[key]);
|
||||
if (parsed && typeof parsed === 'object') {
|
||||
obj[key] = parsed;
|
||||
}
|
||||
} catch (error) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Flatten the object
|
||||
for (const key of Object.keys(obj)) {
|
||||
if (typeof obj[key] === 'object' && obj[key] !== null) {
|
||||
const nested = extraNetworksFlattenMetadata(obj[key]);
|
||||
for (const nestedKey of Object.keys(nested)) {
|
||||
result[`${key}/${nestedKey}`] = nested[nestedKey];
|
||||
}
|
||||
} else {
|
||||
result[key] = obj[key];
|
||||
}
|
||||
}
|
||||
|
||||
// Special case for handling modelspec keys
|
||||
for (const key of Object.keys(result)) {
|
||||
if (key.startsWith("modelspec.")) {
|
||||
result[key.replaceAll(".", "/")] = result[key];
|
||||
delete result[key];
|
||||
}
|
||||
}
|
||||
|
||||
// Add empty keys to designate hierarchy
|
||||
for (const key of Object.keys(result)) {
|
||||
const parts = key.split("/");
|
||||
for (let i = 1; i < parts.length; i++) {
|
||||
const parent = parts.slice(0, i).join("/");
|
||||
if (!result[parent]) {
|
||||
result[parent] = "";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
function extraNetworksShowMetadata(text) {
|
||||
try {
|
||||
let parsed = JSON.parse(text);
|
||||
if (parsed && typeof parsed === 'object') {
|
||||
parsed = extraNetworksFlattenMetadata(parsed);
|
||||
const table = createVisualizationTable(parsed, 0);
|
||||
popup(table);
|
||||
return;
|
||||
}
|
||||
} catch (error) {
|
||||
console.error(error);
|
||||
}
|
||||
|
||||
var elem = document.createElement('pre');
|
||||
elem.classList.add('popup-metadata');
|
||||
elem.textContent = text;
|
||||
|
||||
popup(elem);
|
||||
return;
|
||||
}
|
||||
|
||||
function requestGet(url, data, handler, errorHandler) {
|
||||
@ -543,16 +605,18 @@ function requestGet(url, data, handler, errorHandler) {
|
||||
xhr.send(js);
|
||||
}
|
||||
|
||||
function extraNetworksCopyCardPath(event, path) {
|
||||
navigator.clipboard.writeText(path);
|
||||
function extraNetworksCopyCardPath(event) {
|
||||
navigator.clipboard.writeText(event.target.getAttribute("data-clipboard-text"));
|
||||
event.stopPropagation();
|
||||
}
|
||||
|
||||
function extraNetworksRequestMetadata(event, extraPage, cardName) {
|
||||
function extraNetworksRequestMetadata(event, extraPage) {
|
||||
var showError = function() {
|
||||
extraNetworksShowMetadata("there was an error getting metadata");
|
||||
};
|
||||
|
||||
var cardName = event.target.parentElement.parentElement.getAttribute("data-name");
|
||||
|
||||
requestGet("./sd_extra_networks/metadata", {page: extraPage, item: cardName}, function(data) {
|
||||
if (data && data.metadata) {
|
||||
extraNetworksShowMetadata(data.metadata);
|
||||
@ -566,7 +630,7 @@ function extraNetworksRequestMetadata(event, extraPage, cardName) {
|
||||
|
||||
var extraPageUserMetadataEditors = {};
|
||||
|
||||
function extraNetworksEditUserMetadata(event, tabname, extraPage, cardName) {
|
||||
function extraNetworksEditUserMetadata(event, tabname, extraPage) {
|
||||
var id = tabname + '_' + extraPage + '_edit_user_metadata';
|
||||
|
||||
var editor = extraPageUserMetadataEditors[id];
|
||||
@ -578,6 +642,7 @@ function extraNetworksEditUserMetadata(event, tabname, extraPage, cardName) {
|
||||
extraPageUserMetadataEditors[id] = editor;
|
||||
}
|
||||
|
||||
var cardName = event.target.parentElement.parentElement.getAttribute("data-name");
|
||||
editor.nameTextarea.value = cardName;
|
||||
updateInput(editor.nameTextarea);
|
||||
|
||||
|
@ -131,19 +131,15 @@ function setupImageForLightbox(e) {
|
||||
e.style.cursor = 'pointer';
|
||||
e.style.userSelect = 'none';
|
||||
|
||||
var isFirefox = navigator.userAgent.toLowerCase().indexOf('firefox') > -1;
|
||||
|
||||
// For Firefox, listening on click first switched to next image then shows the lightbox.
|
||||
// If you know how to fix this without switching to mousedown event, please.
|
||||
// For other browsers the event is click to make it possiblr to drag picture.
|
||||
var event = isFirefox ? 'mousedown' : 'click';
|
||||
|
||||
e.addEventListener(event, function(evt) {
|
||||
e.addEventListener('mousedown', function(evt) {
|
||||
if (evt.button == 1) {
|
||||
open(evt.target.src);
|
||||
evt.preventDefault();
|
||||
return;
|
||||
}
|
||||
}, true);
|
||||
|
||||
e.addEventListener('click', function(evt) {
|
||||
if (!opts.js_modal_lightbox || evt.button != 0) return;
|
||||
|
||||
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed);
|
||||
|
@ -33,120 +33,141 @@ function createRow(table, cellName, items) {
|
||||
return res;
|
||||
}
|
||||
|
||||
function showProfile(path, cutoff = 0.05) {
|
||||
requestGet(path, {}, function(data) {
|
||||
var table = document.createElement('table');
|
||||
table.className = 'popup-table';
|
||||
function createVisualizationTable(data, cutoff = 0, sort = "") {
|
||||
var table = document.createElement('table');
|
||||
table.className = 'popup-table';
|
||||
|
||||
data.records['total'] = data.total;
|
||||
var keys = Object.keys(data.records).sort(function(a, b) {
|
||||
return data.records[b] - data.records[a];
|
||||
var keys = Object.keys(data);
|
||||
if (sort === "number") {
|
||||
keys = keys.sort(function(a, b) {
|
||||
return data[b] - data[a];
|
||||
});
|
||||
var items = keys.map(function(x) {
|
||||
return {key: x, parts: x.split('/'), time: data.records[x]};
|
||||
} else {
|
||||
keys = keys.sort();
|
||||
}
|
||||
var items = keys.map(function(x) {
|
||||
return {key: x, parts: x.split('/'), value: data[x]};
|
||||
});
|
||||
var maxLength = items.reduce(function(a, b) {
|
||||
return Math.max(a, b.parts.length);
|
||||
}, 0);
|
||||
|
||||
var cols = createRow(
|
||||
table,
|
||||
'th',
|
||||
[
|
||||
cutoff === 0 ? 'key' : 'record',
|
||||
cutoff === 0 ? 'value' : 'seconds'
|
||||
]
|
||||
);
|
||||
cols[0].colSpan = maxLength;
|
||||
|
||||
function arraysEqual(a, b) {
|
||||
return !(a < b || b < a);
|
||||
}
|
||||
|
||||
var addLevel = function(level, parent, hide) {
|
||||
var matching = items.filter(function(x) {
|
||||
return x.parts[level] && !x.parts[level + 1] && arraysEqual(x.parts.slice(0, level), parent);
|
||||
});
|
||||
var maxLength = items.reduce(function(a, b) {
|
||||
return Math.max(a, b.parts.length);
|
||||
}, 0);
|
||||
|
||||
var cols = createRow(table, 'th', ['record', 'seconds']);
|
||||
cols[0].colSpan = maxLength;
|
||||
|
||||
function arraysEqual(a, b) {
|
||||
return !(a < b || b < a);
|
||||
if (sort === "number") {
|
||||
matching = matching.sort(function(a, b) {
|
||||
return b.value - a.value;
|
||||
});
|
||||
} else {
|
||||
matching = matching.sort();
|
||||
}
|
||||
var othersTime = 0;
|
||||
var othersList = [];
|
||||
var othersRows = [];
|
||||
var childrenRows = [];
|
||||
matching.forEach(function(x) {
|
||||
var visible = (cutoff === 0 && !hide) || (x.value >= cutoff && !hide);
|
||||
|
||||
var addLevel = function(level, parent, hide) {
|
||||
var matching = items.filter(function(x) {
|
||||
return x.parts[level] && !x.parts[level + 1] && arraysEqual(x.parts.slice(0, level), parent);
|
||||
});
|
||||
var sorted = matching.sort(function(a, b) {
|
||||
return b.time - a.time;
|
||||
});
|
||||
var othersTime = 0;
|
||||
var othersList = [];
|
||||
var othersRows = [];
|
||||
var childrenRows = [];
|
||||
sorted.forEach(function(x) {
|
||||
var visible = x.time >= cutoff && !hide;
|
||||
var cells = [];
|
||||
for (var i = 0; i < maxLength; i++) {
|
||||
cells.push(x.parts[i]);
|
||||
}
|
||||
cells.push(cutoff === 0 ? x.value : x.value.toFixed(3));
|
||||
var cols = createRow(table, 'td', cells);
|
||||
for (i = 0; i < level; i++) {
|
||||
cols[i].className = 'muted';
|
||||
}
|
||||
|
||||
var cells = [];
|
||||
for (var i = 0; i < maxLength; i++) {
|
||||
cells.push(x.parts[i]);
|
||||
}
|
||||
cells.push(x.time.toFixed(3));
|
||||
var cols = createRow(table, 'td', cells);
|
||||
for (i = 0; i < level; i++) {
|
||||
cols[i].className = 'muted';
|
||||
}
|
||||
var tr = cols[0].parentNode;
|
||||
if (!visible) {
|
||||
tr.classList.add("hidden");
|
||||
}
|
||||
|
||||
var tr = cols[0].parentNode;
|
||||
if (!visible) {
|
||||
tr.classList.add("hidden");
|
||||
}
|
||||
|
||||
if (x.time >= cutoff) {
|
||||
childrenRows.push(tr);
|
||||
} else {
|
||||
othersTime += x.time;
|
||||
othersList.push(x.parts[level]);
|
||||
othersRows.push(tr);
|
||||
}
|
||||
|
||||
var children = addLevel(level + 1, parent.concat([x.parts[level]]), true);
|
||||
if (children.length > 0) {
|
||||
var cell = cols[level];
|
||||
var onclick = function() {
|
||||
cell.classList.remove("link");
|
||||
cell.removeEventListener("click", onclick);
|
||||
children.forEach(function(x) {
|
||||
x.classList.remove("hidden");
|
||||
});
|
||||
};
|
||||
cell.classList.add("link");
|
||||
cell.addEventListener("click", onclick);
|
||||
}
|
||||
});
|
||||
|
||||
if (othersTime > 0) {
|
||||
var cells = [];
|
||||
for (var i = 0; i < maxLength; i++) {
|
||||
cells.push(parent[i]);
|
||||
}
|
||||
cells.push(othersTime.toFixed(3));
|
||||
cells[level] = 'others';
|
||||
var cols = createRow(table, 'td', cells);
|
||||
for (i = 0; i < level; i++) {
|
||||
cols[i].className = 'muted';
|
||||
}
|
||||
if (cutoff === 0 || x.value >= cutoff) {
|
||||
childrenRows.push(tr);
|
||||
} else {
|
||||
othersTime += x.value;
|
||||
othersList.push(x.parts[level]);
|
||||
othersRows.push(tr);
|
||||
}
|
||||
|
||||
var children = addLevel(level + 1, parent.concat([x.parts[level]]), true);
|
||||
if (children.length > 0) {
|
||||
var cell = cols[level];
|
||||
var tr = cell.parentNode;
|
||||
var onclick = function() {
|
||||
tr.classList.add("hidden");
|
||||
cell.classList.remove("link");
|
||||
cell.removeEventListener("click", onclick);
|
||||
othersRows.forEach(function(x) {
|
||||
children.forEach(function(x) {
|
||||
x.classList.remove("hidden");
|
||||
});
|
||||
};
|
||||
|
||||
cell.title = othersList.join(", ");
|
||||
cell.classList.add("link");
|
||||
cell.addEventListener("click", onclick);
|
||||
}
|
||||
});
|
||||
|
||||
if (hide) {
|
||||
tr.classList.add("hidden");
|
||||
}
|
||||
|
||||
childrenRows.push(tr);
|
||||
if (othersTime > 0) {
|
||||
var cells = [];
|
||||
for (var i = 0; i < maxLength; i++) {
|
||||
cells.push(parent[i]);
|
||||
}
|
||||
cells.push(othersTime.toFixed(3));
|
||||
cells[level] = 'others';
|
||||
var cols = createRow(table, 'td', cells);
|
||||
for (i = 0; i < level; i++) {
|
||||
cols[i].className = 'muted';
|
||||
}
|
||||
|
||||
return childrenRows;
|
||||
};
|
||||
var cell = cols[level];
|
||||
var tr = cell.parentNode;
|
||||
var onclick = function() {
|
||||
tr.classList.add("hidden");
|
||||
cell.classList.remove("link");
|
||||
cell.removeEventListener("click", onclick);
|
||||
othersRows.forEach(function(x) {
|
||||
x.classList.remove("hidden");
|
||||
});
|
||||
};
|
||||
|
||||
addLevel(0, []);
|
||||
cell.title = othersList.join(", ");
|
||||
cell.classList.add("link");
|
||||
cell.addEventListener("click", onclick);
|
||||
|
||||
if (hide) {
|
||||
tr.classList.add("hidden");
|
||||
}
|
||||
|
||||
childrenRows.push(tr);
|
||||
}
|
||||
|
||||
return childrenRows;
|
||||
};
|
||||
|
||||
addLevel(0, []);
|
||||
|
||||
return table;
|
||||
}
|
||||
|
||||
function showProfile(path, cutoff = 0.05) {
|
||||
requestGet(path, {}, function(data) {
|
||||
data.records['total'] = data.total;
|
||||
const table = createVisualizationTable(data.records, cutoff, "number");
|
||||
popup(table);
|
||||
});
|
||||
}
|
||||
|
@ -22,6 +22,9 @@
|
||||
}
|
||||
|
||||
function displayResizeHandle(parent) {
|
||||
if (!parent.needHideOnMoblie) {
|
||||
return true;
|
||||
}
|
||||
if (window.innerWidth < GRADIO_MIN_WIDTH * 2 + PAD * 4) {
|
||||
parent.style.display = 'flex';
|
||||
parent.resizeHandle.style.display = "none";
|
||||
@ -41,7 +44,7 @@
|
||||
|
||||
const ratio = newParentWidth / oldParentWidth;
|
||||
|
||||
const newWidthL = Math.max(Math.floor(ratio * widthL), GRADIO_MIN_WIDTH);
|
||||
const newWidthL = Math.max(Math.floor(ratio * widthL), parent.minLeftColWidth);
|
||||
setLeftColGridTemplate(parent, newWidthL);
|
||||
|
||||
R.parentWidth = newParentWidth;
|
||||
@ -64,7 +67,24 @@
|
||||
|
||||
parent.style.display = 'grid';
|
||||
parent.style.gap = '0';
|
||||
const gridTemplateColumns = `${parent.children[0].style.flexGrow}fr ${PAD}px ${parent.children[1].style.flexGrow}fr`;
|
||||
let leftColTemplate = "";
|
||||
if (parent.children[0].style.flexGrow) {
|
||||
leftColTemplate = `${parent.children[0].style.flexGrow}fr`;
|
||||
parent.minLeftColWidth = GRADIO_MIN_WIDTH;
|
||||
parent.minRightColWidth = GRADIO_MIN_WIDTH;
|
||||
parent.needHideOnMoblie = true;
|
||||
} else {
|
||||
leftColTemplate = parent.children[0].style.flexBasis;
|
||||
parent.minLeftColWidth = parent.children[0].style.flexBasis.slice(0, -2) / 2;
|
||||
parent.minRightColWidth = 0;
|
||||
parent.needHideOnMoblie = false;
|
||||
}
|
||||
|
||||
if (!leftColTemplate) {
|
||||
leftColTemplate = '1fr';
|
||||
}
|
||||
|
||||
const gridTemplateColumns = `${leftColTemplate} ${PAD}px ${parent.children[1].style.flexGrow}fr`;
|
||||
parent.style.gridTemplateColumns = gridTemplateColumns;
|
||||
parent.style.originalGridTemplateColumns = gridTemplateColumns;
|
||||
|
||||
@ -132,7 +152,7 @@
|
||||
} else {
|
||||
delta = R.screenX - evt.changedTouches[0].screenX;
|
||||
}
|
||||
const leftColWidth = Math.max(Math.min(R.leftColStartWidth - delta, R.parent.offsetWidth - GRADIO_MIN_WIDTH - PAD), GRADIO_MIN_WIDTH);
|
||||
const leftColWidth = Math.max(Math.min(R.leftColStartWidth - delta, R.parent.offsetWidth - R.parent.minRightColWidth - PAD), R.parent.minLeftColWidth);
|
||||
setLeftColGridTemplate(R.parent, leftColWidth);
|
||||
}
|
||||
});
|
||||
@ -171,10 +191,15 @@
|
||||
setupResizeHandle = setup;
|
||||
})();
|
||||
|
||||
onUiLoaded(function() {
|
||||
|
||||
function setupAllResizeHandles() {
|
||||
for (var elem of gradioApp().querySelectorAll('.resize-handle-row')) {
|
||||
if (!elem.querySelector('.resize-handle')) {
|
||||
if (!elem.querySelector('.resize-handle') && !elem.children[0].classList.contains("hidden")) {
|
||||
setupResizeHandle(elem);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
onUiLoaded(setupAllResizeHandles);
|
||||
|
||||
|
@ -136,8 +136,7 @@ function showSubmitInterruptingPlaceholder(tabname) {
|
||||
function showRestoreProgressButton(tabname, show) {
|
||||
var button = gradioApp().getElementById(tabname + "_restore_progress");
|
||||
if (!button) return;
|
||||
|
||||
button.style.display = show ? "flex" : "none";
|
||||
button.style.setProperty('display', show ? 'flex' : 'none', 'important');
|
||||
}
|
||||
|
||||
function submit() {
|
||||
@ -209,6 +208,7 @@ function restoreProgressTxt2img() {
|
||||
var id = localGet("txt2img_task_id");
|
||||
|
||||
if (id) {
|
||||
showSubmitInterruptingPlaceholder('txt2img');
|
||||
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
|
||||
showSubmitButtons('txt2img', true);
|
||||
}, null, 0);
|
||||
@ -223,6 +223,7 @@ function restoreProgressImg2img() {
|
||||
var id = localGet("img2img_task_id");
|
||||
|
||||
if (id) {
|
||||
showSubmitInterruptingPlaceholder('img2img');
|
||||
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function() {
|
||||
showSubmitButtons('img2img', true);
|
||||
}, null, 0);
|
||||
@ -411,7 +412,7 @@ function switchWidthHeight(tabname) {
|
||||
|
||||
var onEditTimers = {};
|
||||
|
||||
// calls func after afterMs milliseconds has passed since the input elem has beed enited by user
|
||||
// calls func after afterMs milliseconds has passed since the input elem has been edited by user
|
||||
function onEdit(editId, elem, afterMs, func) {
|
||||
var edited = function() {
|
||||
var existingTimer = onEditTimers[editId];
|
||||
|
@ -17,13 +17,13 @@ from fastapi.encoders import jsonable_encoder
|
||||
from secrets import compare_digest
|
||||
|
||||
import modules.shared as shared
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items, script_callbacks, infotext_utils, sd_models
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items, script_callbacks, infotext_utils, sd_models, sd_schedulers
|
||||
from modules.api import models
|
||||
from modules.shared import opts
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
|
||||
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
|
||||
from PIL import PngImagePlugin, Image
|
||||
from PIL import PngImagePlugin
|
||||
from modules.sd_models_config import find_checkpoint_config_near_filename
|
||||
from modules.realesrgan_model import get_realesrgan_models
|
||||
from modules import devices
|
||||
@ -85,7 +85,7 @@ def decode_base64_to_image(encoding):
|
||||
headers = {'user-agent': opts.api_useragent} if opts.api_useragent else {}
|
||||
response = requests.get(encoding, timeout=30, headers=headers)
|
||||
try:
|
||||
image = Image.open(BytesIO(response.content))
|
||||
image = images.read(BytesIO(response.content))
|
||||
return image
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="Invalid image url") from e
|
||||
@ -93,7 +93,7 @@ def decode_base64_to_image(encoding):
|
||||
if encoding.startswith("data:image/"):
|
||||
encoding = encoding.split(";")[1].split(",")[1]
|
||||
try:
|
||||
image = Image.open(BytesIO(base64.b64decode(encoding)))
|
||||
image = images.read(BytesIO(base64.b64decode(encoding)))
|
||||
return image
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail="Invalid encoded image") from e
|
||||
@ -221,6 +221,7 @@ class Api:
|
||||
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
|
||||
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
|
||||
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=list[models.SamplerItem])
|
||||
self.add_api_route("/sdapi/v1/schedulers", self.get_schedulers, methods=["GET"], response_model=list[models.SchedulerItem])
|
||||
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=list[models.UpscalerItem])
|
||||
self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=list[models.LatentUpscalerModeItem])
|
||||
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=list[models.SDModelItem])
|
||||
@ -360,7 +361,7 @@ class Api:
|
||||
return script_args
|
||||
|
||||
def apply_infotext(self, request, tabname, *, script_runner=None, mentioned_script_args=None):
|
||||
"""Processes `infotext` field from the `request`, and sets other fields of the `request` accoring to what's in infotext.
|
||||
"""Processes `infotext` field from the `request`, and sets other fields of the `request` according to what's in infotext.
|
||||
|
||||
If request already has a field set, and that field is encountered in infotext too, the value from infotext is ignored.
|
||||
|
||||
@ -409,8 +410,8 @@ class Api:
|
||||
if request.override_settings is None:
|
||||
request.override_settings = {}
|
||||
|
||||
overriden_settings = infotext_utils.get_override_settings(params)
|
||||
for _, setting_name, value in overriden_settings:
|
||||
overridden_settings = infotext_utils.get_override_settings(params)
|
||||
for _, setting_name, value in overridden_settings:
|
||||
if setting_name not in request.override_settings:
|
||||
request.override_settings[setting_name] = value
|
||||
|
||||
@ -683,6 +684,17 @@ class Api:
|
||||
def get_samplers(self):
|
||||
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
|
||||
|
||||
def get_schedulers(self):
|
||||
return [
|
||||
{
|
||||
"name": scheduler.name,
|
||||
"label": scheduler.label,
|
||||
"aliases": scheduler.aliases,
|
||||
"default_rho": scheduler.default_rho,
|
||||
"need_inner_model": scheduler.need_inner_model,
|
||||
}
|
||||
for scheduler in sd_schedulers.schedulers]
|
||||
|
||||
def get_upscalers(self):
|
||||
return [
|
||||
{
|
||||
|
@ -147,7 +147,7 @@ class ExtrasBaseRequest(BaseModel):
|
||||
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
|
||||
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
|
||||
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
|
||||
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8, description="By how much to upscale the image, only used when resize_mode=0.")
|
||||
upscaling_resize: float = Field(default=2, title="Upscaling Factor", gt=0, description="By how much to upscale the image, only used when resize_mode=0.")
|
||||
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
|
||||
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
|
||||
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
|
||||
@ -235,6 +235,13 @@ class SamplerItem(BaseModel):
|
||||
aliases: list[str] = Field(title="Aliases")
|
||||
options: dict[str, str] = Field(title="Options")
|
||||
|
||||
class SchedulerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
label: str = Field(title="Label")
|
||||
aliases: Optional[list[str]] = Field(title="Aliases")
|
||||
default_rho: Optional[float] = Field(title="Default Rho")
|
||||
need_inner_model: Optional[bool] = Field(title="Needs Inner Model")
|
||||
|
||||
class UpscalerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
model_name: Optional[str] = Field(title="Model Name")
|
||||
|
@ -2,48 +2,55 @@ import json
|
||||
import os
|
||||
import os.path
|
||||
import threading
|
||||
import time
|
||||
|
||||
import diskcache
|
||||
import tqdm
|
||||
|
||||
from modules.paths import data_path, script_path
|
||||
|
||||
cache_filename = os.environ.get('SD_WEBUI_CACHE_FILE', os.path.join(data_path, "cache.json"))
|
||||
cache_data = None
|
||||
cache_dir = os.environ.get('SD_WEBUI_CACHE_DIR', os.path.join(data_path, "cache"))
|
||||
caches = {}
|
||||
cache_lock = threading.Lock()
|
||||
|
||||
dump_cache_after = None
|
||||
dump_cache_thread = None
|
||||
|
||||
|
||||
def dump_cache():
|
||||
"""
|
||||
Marks cache for writing to disk. 5 seconds after no one else flags the cache for writing, it is written.
|
||||
"""
|
||||
"""old function for dumping cache to disk; does nothing since diskcache."""
|
||||
|
||||
global dump_cache_after
|
||||
global dump_cache_thread
|
||||
pass
|
||||
|
||||
def thread_func():
|
||||
global dump_cache_after
|
||||
global dump_cache_thread
|
||||
|
||||
while dump_cache_after is not None and time.time() < dump_cache_after:
|
||||
time.sleep(1)
|
||||
def make_cache(subsection: str) -> diskcache.Cache:
|
||||
return diskcache.Cache(
|
||||
os.path.join(cache_dir, subsection),
|
||||
size_limit=2**32, # 4 GB, culling oldest first
|
||||
disk_min_file_size=2**18, # keep up to 256KB in Sqlite
|
||||
)
|
||||
|
||||
with cache_lock:
|
||||
cache_filename_tmp = cache_filename + "-"
|
||||
with open(cache_filename_tmp, "w", encoding="utf8") as file:
|
||||
json.dump(cache_data, file, indent=4, ensure_ascii=False)
|
||||
|
||||
os.replace(cache_filename_tmp, cache_filename)
|
||||
def convert_old_cached_data():
|
||||
try:
|
||||
with open(cache_filename, "r", encoding="utf8") as file:
|
||||
data = json.load(file)
|
||||
except FileNotFoundError:
|
||||
return
|
||||
except Exception:
|
||||
os.replace(cache_filename, os.path.join(script_path, "tmp", "cache.json"))
|
||||
print('[ERROR] issue occurred while trying to read cache.json; old cache has been moved to tmp/cache.json')
|
||||
return
|
||||
|
||||
dump_cache_after = None
|
||||
dump_cache_thread = None
|
||||
total_count = sum(len(keyvalues) for keyvalues in data.values())
|
||||
|
||||
with cache_lock:
|
||||
dump_cache_after = time.time() + 5
|
||||
if dump_cache_thread is None:
|
||||
dump_cache_thread = threading.Thread(name='cache-writer', target=thread_func)
|
||||
dump_cache_thread.start()
|
||||
with tqdm.tqdm(total=total_count, desc="converting cache") as progress:
|
||||
for subsection, keyvalues in data.items():
|
||||
cache_obj = caches.get(subsection)
|
||||
if cache_obj is None:
|
||||
cache_obj = make_cache(subsection)
|
||||
caches[subsection] = cache_obj
|
||||
|
||||
for key, value in keyvalues.items():
|
||||
cache_obj[key] = value
|
||||
progress.update(1)
|
||||
|
||||
|
||||
def cache(subsection):
|
||||
@ -54,28 +61,21 @@ def cache(subsection):
|
||||
subsection (str): The subsection identifier for the cache.
|
||||
|
||||
Returns:
|
||||
dict: The cache data for the specified subsection.
|
||||
diskcache.Cache: The cache data for the specified subsection.
|
||||
"""
|
||||
|
||||
global cache_data
|
||||
|
||||
if cache_data is None:
|
||||
cache_obj = caches.get(subsection)
|
||||
if not cache_obj:
|
||||
with cache_lock:
|
||||
if cache_data is None:
|
||||
try:
|
||||
with open(cache_filename, "r", encoding="utf8") as file:
|
||||
cache_data = json.load(file)
|
||||
except FileNotFoundError:
|
||||
cache_data = {}
|
||||
except Exception:
|
||||
os.replace(cache_filename, os.path.join(script_path, "tmp", "cache.json"))
|
||||
print('[ERROR] issue occurred while trying to read cache.json, move current cache to tmp/cache.json and create new cache')
|
||||
cache_data = {}
|
||||
if not os.path.exists(cache_dir) and os.path.isfile(cache_filename):
|
||||
convert_old_cached_data()
|
||||
|
||||
s = cache_data.get(subsection, {})
|
||||
cache_data[subsection] = s
|
||||
cache_obj = caches.get(subsection)
|
||||
if not cache_obj:
|
||||
cache_obj = make_cache(subsection)
|
||||
caches[subsection] = cache_obj
|
||||
|
||||
return s
|
||||
return cache_obj
|
||||
|
||||
|
||||
def cached_data_for_file(subsection, title, filename, func):
|
||||
|
@ -100,8 +100,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
||||
sys_pct = sys_peak/max(sys_total, 1) * 100
|
||||
|
||||
toltip_a = "Active: peak amount of video memory used during generation (excluding cached data)"
|
||||
toltip_r = "Reserved: total amout of video memory allocated by the Torch library "
|
||||
toltip_sys = "System: peak amout of video memory allocated by all running programs, out of total capacity"
|
||||
toltip_r = "Reserved: total amount of video memory allocated by the Torch library "
|
||||
toltip_sys = "System: peak amount of video memory allocated by all running programs, out of total capacity"
|
||||
|
||||
text_a = f"<abbr title='{toltip_a}'>A</abbr>: <span class='measurement'>{active_peak/1024:.2f} GB</span>"
|
||||
text_r = f"<abbr title='{toltip_r}'>R</abbr>: <span class='measurement'>{reserved_peak/1024:.2f} GB</span>"
|
||||
|
@ -121,4 +121,7 @@ parser.add_argument('--api-server-stop', action='store_true', help='enable serve
|
||||
parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set timeout_keep_alive for uvicorn')
|
||||
parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False)
|
||||
parser.add_argument("--disable-extra-extensions", action='store_true', help="prevent all extensions except built-in from running regardless of any other settings", default=False)
|
||||
parser.add_argument("--skip-load-model-at-start", action='store_true', help="if load a model at web start, only take effect when --nowebui", )
|
||||
parser.add_argument("--skip-load-model-at-start", action='store_true', help="if load a model at web start, only take effect when --nowebui")
|
||||
parser.add_argument("--unix-filenames-sanitization", action='store_true', help="allow any symbols except '/' in filenames. May conflict with your browser and file system")
|
||||
parser.add_argument("--filenames-max-length", type=int, default=128, help='maximal length of filenames of saved images. If you override it, it can conflict with your file system')
|
||||
parser.add_argument("--no-prompt-history", action='store_true', help="disable read prompt from last generation feature; settings this argument will not create '--data_path/params.txt' file")
|
||||
|
@ -50,7 +50,7 @@ class FaceRestorerCodeFormer(face_restoration_utils.CommonFaceRestoration):
|
||||
|
||||
def restore_face(cropped_face_t):
|
||||
assert self.net is not None
|
||||
return self.net(cropped_face_t, w=w, adain=True)[0]
|
||||
return self.net(cropped_face_t, weight=w, adain=True)[0]
|
||||
|
||||
return self.restore_with_helper(np_image, restore_face)
|
||||
|
||||
|
@ -259,7 +259,7 @@ def test_for_nans(x, where):
|
||||
def first_time_calculation():
|
||||
"""
|
||||
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and
|
||||
spends about 2.7 seconds doing that, at least wih NVidia.
|
||||
spends about 2.7 seconds doing that, at least with NVidia.
|
||||
"""
|
||||
|
||||
x = torch.zeros((1, 1)).to(device, dtype)
|
||||
|
@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import configparser
|
||||
import dataclasses
|
||||
import os
|
||||
import threading
|
||||
import re
|
||||
@ -9,6 +10,10 @@ from modules import shared, errors, cache, scripts
|
||||
from modules.gitpython_hack import Repo
|
||||
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
|
||||
|
||||
extensions: list[Extension] = []
|
||||
extension_paths: dict[str, Extension] = {}
|
||||
loaded_extensions: dict[str, Exception] = {}
|
||||
|
||||
|
||||
os.makedirs(extensions_dir, exist_ok=True)
|
||||
|
||||
@ -22,6 +27,13 @@ def active():
|
||||
return [x for x in extensions if x.enabled]
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class CallbackOrderInfo:
|
||||
name: str
|
||||
before: list
|
||||
after: list
|
||||
|
||||
|
||||
class ExtensionMetadata:
|
||||
filename = "metadata.ini"
|
||||
config: configparser.ConfigParser
|
||||
@ -42,7 +54,7 @@ class ExtensionMetadata:
|
||||
self.canonical_name = self.config.get("Extension", "Name", fallback=canonical_name)
|
||||
self.canonical_name = canonical_name.lower().strip()
|
||||
|
||||
self.requires = self.get_script_requirements("Requires", "Extension")
|
||||
self.requires = None
|
||||
|
||||
def get_script_requirements(self, field, section, extra_section=None):
|
||||
"""reads a list of requirements from the config; field is the name of the field in the ini file,
|
||||
@ -54,7 +66,15 @@ class ExtensionMetadata:
|
||||
if extra_section:
|
||||
x = x + ', ' + self.config.get(extra_section, field, fallback='')
|
||||
|
||||
return self.parse_list(x.lower())
|
||||
listed_requirements = self.parse_list(x.lower())
|
||||
res = []
|
||||
|
||||
for requirement in listed_requirements:
|
||||
loaded_requirements = (x for x in requirement.split("|") if x in loaded_extensions)
|
||||
relevant_requirement = next(loaded_requirements, requirement)
|
||||
res.append(relevant_requirement)
|
||||
|
||||
return res
|
||||
|
||||
def parse_list(self, text):
|
||||
"""converts a line from config ("ext1 ext2, ext3 ") into a python list (["ext1", "ext2", "ext3"])"""
|
||||
@ -65,6 +85,22 @@ class ExtensionMetadata:
|
||||
# both "," and " " are accepted as separator
|
||||
return [x for x in re.split(r"[,\s]+", text.strip()) if x]
|
||||
|
||||
def list_callback_order_instructions(self):
|
||||
for section in self.config.sections():
|
||||
if not section.startswith("callbacks/"):
|
||||
continue
|
||||
|
||||
callback_name = section[10:]
|
||||
|
||||
if not callback_name.startswith(self.canonical_name):
|
||||
errors.report(f"Callback order section for extension {self.canonical_name} is referencing the wrong extension: {section}")
|
||||
continue
|
||||
|
||||
before = self.parse_list(self.config.get(section, 'Before', fallback=''))
|
||||
after = self.parse_list(self.config.get(section, 'After', fallback=''))
|
||||
|
||||
yield CallbackOrderInfo(callback_name, before, after)
|
||||
|
||||
|
||||
class Extension:
|
||||
lock = threading.Lock()
|
||||
@ -156,6 +192,8 @@ class Extension:
|
||||
def check_updates(self):
|
||||
repo = Repo(self.path)
|
||||
for fetch in repo.remote().fetch(dry_run=True):
|
||||
if self.branch and fetch.name != f'{repo.remote().name}/{self.branch}':
|
||||
continue
|
||||
if fetch.flags != fetch.HEAD_UPTODATE:
|
||||
self.can_update = True
|
||||
self.status = "new commits"
|
||||
@ -186,6 +224,8 @@ class Extension:
|
||||
|
||||
def list_extensions():
|
||||
extensions.clear()
|
||||
extension_paths.clear()
|
||||
loaded_extensions.clear()
|
||||
|
||||
if shared.cmd_opts.disable_all_extensions:
|
||||
print("*** \"--disable-all-extensions\" arg was used, will not load any extensions ***")
|
||||
@ -196,7 +236,6 @@ def list_extensions():
|
||||
elif shared.opts.disable_all_extensions == "extra":
|
||||
print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")
|
||||
|
||||
loaded_extensions = {}
|
||||
|
||||
# scan through extensions directory and load metadata
|
||||
for dirname in [extensions_builtin_dir, extensions_dir]:
|
||||
@ -220,8 +259,12 @@ def list_extensions():
|
||||
is_builtin = dirname == extensions_builtin_dir
|
||||
extension = Extension(name=extension_dirname, path=path, enabled=extension_dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin, metadata=metadata)
|
||||
extensions.append(extension)
|
||||
extension_paths[extension.path] = extension
|
||||
loaded_extensions[canonical_name] = extension
|
||||
|
||||
for extension in extensions:
|
||||
extension.metadata.requires = extension.metadata.get_script_requirements("Requires", "Extension")
|
||||
|
||||
# check for requirements
|
||||
for extension in extensions:
|
||||
if not extension.enabled:
|
||||
@ -238,4 +281,16 @@ def list_extensions():
|
||||
continue
|
||||
|
||||
|
||||
extensions: list[Extension] = []
|
||||
def find_extension(filename):
|
||||
parentdir = os.path.dirname(os.path.realpath(filename))
|
||||
|
||||
while parentdir != filename:
|
||||
extension = extension_paths.get(parentdir)
|
||||
if extension is not None:
|
||||
return extension
|
||||
|
||||
filename = parentdir
|
||||
parentdir = os.path.dirname(filename)
|
||||
|
||||
return None
|
||||
|
||||
|
@ -60,7 +60,7 @@ class ExtraNetwork:
|
||||
Where name matches the name of this ExtraNetwork object, and arg1:arg2:arg3 are any natural number of text arguments
|
||||
separated by colon.
|
||||
|
||||
Even if the user does not mention this ExtraNetwork in his prompt, the call will stil be made, with empty params_list -
|
||||
Even if the user does not mention this ExtraNetwork in his prompt, the call will still be made, with empty params_list -
|
||||
in this case, all effects of this extra networks should be disabled.
|
||||
|
||||
Can be called multiple times before deactivate() - each new call should override the previous call completely.
|
||||
|
@ -11,7 +11,7 @@ import tqdm
|
||||
from einops import rearrange, repeat
|
||||
from ldm.util import default
|
||||
from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
|
||||
from modules.textual_inversion import textual_inversion, logging
|
||||
from modules.textual_inversion import textual_inversion, saving_settings
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
from torch import einsum
|
||||
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
|
||||
@ -95,6 +95,7 @@ class HypernetworkModule(torch.nn.Module):
|
||||
zeros_(b)
|
||||
else:
|
||||
raise KeyError(f"Key {weight_init} is not defined as initialization!")
|
||||
devices.torch_npu_set_device()
|
||||
self.to(devices.device)
|
||||
|
||||
def fix_old_state_dict(self, state_dict):
|
||||
@ -532,7 +533,7 @@ def train_hypernetwork(id_task, hypernetwork_name: str, learn_rate: float, batch
|
||||
model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
|
||||
**{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
|
||||
)
|
||||
logging.save_settings_to_file(log_directory, {**saved_params, **locals()})
|
||||
saving_settings.save_settings_to_file(log_directory, {**saved_params, **locals()})
|
||||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import datetime
|
||||
|
||||
import functools
|
||||
import pytz
|
||||
import io
|
||||
import math
|
||||
@ -12,7 +12,9 @@ import re
|
||||
import numpy as np
|
||||
import piexif
|
||||
import piexif.helper
|
||||
from PIL import Image, ImageFont, ImageDraw, ImageColor, PngImagePlugin
|
||||
from PIL import Image, ImageFont, ImageDraw, ImageColor, PngImagePlugin, ImageOps
|
||||
# pillow_avif needs to be imported somewhere in code for it to work
|
||||
import pillow_avif # noqa: F401
|
||||
import string
|
||||
import json
|
||||
import hashlib
|
||||
@ -321,13 +323,16 @@ def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
||||
return res
|
||||
|
||||
|
||||
invalid_filename_chars = '#<>:"/\\|?*\n\r\t'
|
||||
if not shared.cmd_opts.unix_filenames_sanitization:
|
||||
invalid_filename_chars = '#<>:"/\\|?*\n\r\t'
|
||||
else:
|
||||
invalid_filename_chars = '/'
|
||||
invalid_filename_prefix = ' '
|
||||
invalid_filename_postfix = ' .'
|
||||
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
|
||||
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
|
||||
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
|
||||
max_filename_part_length = 128
|
||||
max_filename_part_length = shared.cmd_opts.filenames_max_length
|
||||
NOTHING_AND_SKIP_PREVIOUS_TEXT = object()
|
||||
|
||||
|
||||
@ -344,6 +349,32 @@ def sanitize_filename_part(text, replace_spaces=True):
|
||||
return text
|
||||
|
||||
|
||||
@functools.cache
|
||||
def get_scheduler_str(sampler_name, scheduler_name):
|
||||
"""Returns {Scheduler} if the scheduler is applicable to the sampler"""
|
||||
if scheduler_name == 'Automatic':
|
||||
config = sd_samplers.find_sampler_config(sampler_name)
|
||||
scheduler_name = config.options.get('scheduler', 'Automatic')
|
||||
return scheduler_name.capitalize()
|
||||
|
||||
|
||||
@functools.cache
|
||||
def get_sampler_scheduler_str(sampler_name, scheduler_name):
|
||||
"""Returns the '{Sampler} {Scheduler}' if the scheduler is applicable to the sampler"""
|
||||
return f'{sampler_name} {get_scheduler_str(sampler_name, scheduler_name)}'
|
||||
|
||||
|
||||
def get_sampler_scheduler(p, sampler):
|
||||
"""Returns '{Sampler} {Scheduler}' / '{Scheduler}' / 'NOTHING_AND_SKIP_PREVIOUS_TEXT'"""
|
||||
if hasattr(p, 'scheduler') and hasattr(p, 'sampler_name'):
|
||||
if sampler:
|
||||
sampler_scheduler = get_sampler_scheduler_str(p.sampler_name, p.scheduler)
|
||||
else:
|
||||
sampler_scheduler = get_scheduler_str(p.sampler_name, p.scheduler)
|
||||
return sanitize_filename_part(sampler_scheduler, replace_spaces=False)
|
||||
return NOTHING_AND_SKIP_PREVIOUS_TEXT
|
||||
|
||||
|
||||
class FilenameGenerator:
|
||||
replacements = {
|
||||
'seed': lambda self: self.seed if self.seed is not None else '',
|
||||
@ -355,6 +386,8 @@ class FilenameGenerator:
|
||||
'height': lambda self: self.image.height,
|
||||
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
||||
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
||||
'sampler_scheduler': lambda self: self.p and get_sampler_scheduler(self.p, True),
|
||||
'scheduler': lambda self: self.p and get_sampler_scheduler(self.p, False),
|
||||
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
||||
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False),
|
||||
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
||||
@ -566,6 +599,16 @@ def save_image_with_geninfo(image, geninfo, filename, extension=None, existing_p
|
||||
})
|
||||
|
||||
piexif.insert(exif_bytes, filename)
|
||||
elif extension.lower() == '.avif':
|
||||
if opts.enable_pnginfo and geninfo is not None:
|
||||
exif_bytes = piexif.dump({
|
||||
"Exif": {
|
||||
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(geninfo or "", encoding="unicode")
|
||||
},
|
||||
})
|
||||
|
||||
|
||||
image.save(filename,format=image_format, exif=exif_bytes)
|
||||
elif extension.lower() == ".gif":
|
||||
image.save(filename, format=image_format, comment=geninfo)
|
||||
else:
|
||||
@ -744,7 +787,6 @@ def read_info_from_image(image: Image.Image) -> tuple[str | None, dict]:
|
||||
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
||||
|
||||
if exif_comment:
|
||||
items['exif comment'] = exif_comment
|
||||
geninfo = exif_comment
|
||||
elif "comment" in items: # for gif
|
||||
geninfo = items["comment"].decode('utf8', errors="ignore")
|
||||
@ -770,7 +812,7 @@ def image_data(data):
|
||||
import gradio as gr
|
||||
|
||||
try:
|
||||
image = Image.open(io.BytesIO(data))
|
||||
image = read(io.BytesIO(data))
|
||||
textinfo, _ = read_info_from_image(image)
|
||||
return textinfo, None
|
||||
except Exception:
|
||||
@ -797,3 +839,30 @@ def flatten(img, bgcolor):
|
||||
|
||||
return img.convert('RGB')
|
||||
|
||||
|
||||
def read(fp, **kwargs):
|
||||
image = Image.open(fp, **kwargs)
|
||||
image = fix_image(image)
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def fix_image(image: Image.Image):
|
||||
if image is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
image = ImageOps.exif_transpose(image)
|
||||
image = fix_png_transparency(image)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return image
|
||||
|
||||
|
||||
def fix_png_transparency(image: Image.Image):
|
||||
if image.mode not in ("RGB", "P") or not isinstance(image.info.get("transparency"), bytes):
|
||||
return image
|
||||
|
||||
image = image.convert("RGBA")
|
||||
return image
|
||||
|
@ -6,7 +6,7 @@ import numpy as np
|
||||
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError
|
||||
import gradio as gr
|
||||
|
||||
from modules import images as imgutil
|
||||
from modules import images
|
||||
from modules.infotext_utils import create_override_settings_dict, parse_generation_parameters
|
||||
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.shared import opts, state
|
||||
@ -21,7 +21,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
output_dir = output_dir.strip()
|
||||
processing.fix_seed(p)
|
||||
|
||||
images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
|
||||
batch_images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
|
||||
|
||||
is_inpaint_batch = False
|
||||
if inpaint_mask_dir:
|
||||
@ -31,9 +31,9 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
if is_inpaint_batch:
|
||||
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
|
||||
|
||||
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
||||
print(f"Will process {len(batch_images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
||||
|
||||
state.job_count = len(images) * p.n_iter
|
||||
state.job_count = len(batch_images) * p.n_iter
|
||||
|
||||
# extract "default" params to use in case getting png info fails
|
||||
prompt = p.prompt
|
||||
@ -46,8 +46,8 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
sd_model_checkpoint_override = get_closet_checkpoint_match(override_settings.get("sd_model_checkpoint", None))
|
||||
batch_results = None
|
||||
discard_further_results = False
|
||||
for i, image in enumerate(images):
|
||||
state.job = f"{i+1} out of {len(images)}"
|
||||
for i, image in enumerate(batch_images):
|
||||
state.job = f"{i+1} out of {len(batch_images)}"
|
||||
if state.skipped:
|
||||
state.skipped = False
|
||||
|
||||
@ -55,7 +55,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
break
|
||||
|
||||
try:
|
||||
img = Image.open(image)
|
||||
img = images.read(image)
|
||||
except UnidentifiedImageError as e:
|
||||
print(e)
|
||||
continue
|
||||
@ -86,7 +86,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
# otherwise user has many masks with the same name but different extensions
|
||||
mask_image_path = masks_found[0]
|
||||
|
||||
mask_image = Image.open(mask_image_path)
|
||||
mask_image = images.read(mask_image_path)
|
||||
p.image_mask = mask_image
|
||||
|
||||
if use_png_info:
|
||||
@ -94,8 +94,8 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
info_img = img
|
||||
if png_info_dir:
|
||||
info_img_path = os.path.join(png_info_dir, os.path.basename(image))
|
||||
info_img = Image.open(info_img_path)
|
||||
geninfo, _ = imgutil.read_info_from_image(info_img)
|
||||
info_img = images.read(info_img_path)
|
||||
geninfo, _ = images.read_info_from_image(info_img)
|
||||
parsed_parameters = parse_generation_parameters(geninfo)
|
||||
parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
|
||||
except Exception:
|
||||
@ -146,7 +146,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
return batch_results
|
||||
|
||||
|
||||
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):
|
||||
def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, *args):
|
||||
override_settings = create_override_settings_dict(override_settings_texts)
|
||||
|
||||
is_batch = mode == 5
|
||||
@ -175,9 +175,8 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
|
||||
image = None
|
||||
mask = None
|
||||
|
||||
# Use the EXIF orientation of photos taken by smartphones.
|
||||
if image is not None:
|
||||
image = ImageOps.exif_transpose(image)
|
||||
image = images.fix_image(image)
|
||||
mask = images.fix_image(mask)
|
||||
|
||||
if selected_scale_tab == 1 and not is_batch:
|
||||
assert image, "Can't scale by because no image is selected"
|
||||
@ -194,10 +193,8 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
styles=prompt_styles,
|
||||
sampler_name=sampler_name,
|
||||
batch_size=batch_size,
|
||||
n_iter=n_iter,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
width=width,
|
||||
height=height,
|
||||
|
@ -8,7 +8,7 @@ import sys
|
||||
|
||||
import gradio as gr
|
||||
from modules.paths import data_path
|
||||
from modules import shared, ui_tempdir, script_callbacks, processing, infotext_versions
|
||||
from modules import shared, ui_tempdir, script_callbacks, processing, infotext_versions, images, prompt_parser, errors
|
||||
from PIL import Image
|
||||
|
||||
sys.modules['modules.generation_parameters_copypaste'] = sys.modules[__name__] # alias for old name
|
||||
@ -83,7 +83,7 @@ def image_from_url_text(filedata):
|
||||
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
|
||||
|
||||
filename = filename.rsplit('?', 1)[0]
|
||||
return Image.open(filename)
|
||||
return images.read(filename)
|
||||
|
||||
if type(filedata) == list:
|
||||
if len(filedata) == 0:
|
||||
@ -95,7 +95,7 @@ def image_from_url_text(filedata):
|
||||
filedata = filedata[len("data:image/png;base64,"):]
|
||||
|
||||
filedata = base64.decodebytes(filedata.encode('utf-8'))
|
||||
image = Image.open(io.BytesIO(filedata))
|
||||
image = images.read(io.BytesIO(filedata))
|
||||
return image
|
||||
|
||||
|
||||
@ -265,17 +265,6 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
else:
|
||||
prompt += ("" if prompt == "" else "\n") + line
|
||||
|
||||
if shared.opts.infotext_styles != "Ignore":
|
||||
found_styles, prompt, negative_prompt = shared.prompt_styles.extract_styles_from_prompt(prompt, negative_prompt)
|
||||
|
||||
if shared.opts.infotext_styles == "Apply":
|
||||
res["Styles array"] = found_styles
|
||||
elif shared.opts.infotext_styles == "Apply if any" and found_styles:
|
||||
res["Styles array"] = found_styles
|
||||
|
||||
res["Prompt"] = prompt
|
||||
res["Negative prompt"] = negative_prompt
|
||||
|
||||
for k, v in re_param.findall(lastline):
|
||||
try:
|
||||
if v[0] == '"' and v[-1] == '"':
|
||||
@ -290,6 +279,26 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
except Exception:
|
||||
print(f"Error parsing \"{k}: {v}\"")
|
||||
|
||||
# Extract styles from prompt
|
||||
if shared.opts.infotext_styles != "Ignore":
|
||||
found_styles, prompt_no_styles, negative_prompt_no_styles = shared.prompt_styles.extract_styles_from_prompt(prompt, negative_prompt)
|
||||
|
||||
same_hr_styles = True
|
||||
if ("Hires prompt" in res or "Hires negative prompt" in res) and (infotext_ver > infotext_versions.v180_hr_styles if (infotext_ver := infotext_versions.parse_version(res.get("Version"))) else True):
|
||||
hr_prompt, hr_negative_prompt = res.get("Hires prompt", prompt), res.get("Hires negative prompt", negative_prompt)
|
||||
hr_found_styles, hr_prompt_no_styles, hr_negative_prompt_no_styles = shared.prompt_styles.extract_styles_from_prompt(hr_prompt, hr_negative_prompt)
|
||||
if same_hr_styles := found_styles == hr_found_styles:
|
||||
res["Hires prompt"] = '' if hr_prompt_no_styles == prompt_no_styles else hr_prompt_no_styles
|
||||
res['Hires negative prompt'] = '' if hr_negative_prompt_no_styles == negative_prompt_no_styles else hr_negative_prompt_no_styles
|
||||
|
||||
if same_hr_styles:
|
||||
prompt, negative_prompt = prompt_no_styles, negative_prompt_no_styles
|
||||
if (shared.opts.infotext_styles == "Apply if any" and found_styles) or shared.opts.infotext_styles == "Apply":
|
||||
res['Styles array'] = found_styles
|
||||
|
||||
res["Prompt"] = prompt
|
||||
res["Negative prompt"] = negative_prompt
|
||||
|
||||
# Missing CLIP skip means it was set to 1 (the default)
|
||||
if "Clip skip" not in res:
|
||||
res["Clip skip"] = "1"
|
||||
@ -305,6 +314,9 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
if "Hires sampler" not in res:
|
||||
res["Hires sampler"] = "Use same sampler"
|
||||
|
||||
if "Hires schedule type" not in res:
|
||||
res["Hires schedule type"] = "Use same scheduler"
|
||||
|
||||
if "Hires checkpoint" not in res:
|
||||
res["Hires checkpoint"] = "Use same checkpoint"
|
||||
|
||||
@ -356,9 +368,15 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
||||
if "Cache FP16 weight for LoRA" not in res and res["FP8 weight"] != "Disable":
|
||||
res["Cache FP16 weight for LoRA"] = False
|
||||
|
||||
if "Emphasis" not in res:
|
||||
prompt_attention = prompt_parser.parse_prompt_attention(prompt)
|
||||
prompt_attention += prompt_parser.parse_prompt_attention(negative_prompt)
|
||||
prompt_uses_emphasis = len(prompt_attention) != len([p for p in prompt_attention if p[1] == 1.0 or p[0] == 'BREAK'])
|
||||
if "Emphasis" not in res and prompt_uses_emphasis:
|
||||
res["Emphasis"] = "Original"
|
||||
|
||||
if "Refiner switch by sampling steps" not in res:
|
||||
res["Refiner switch by sampling steps"] = False
|
||||
|
||||
infotext_versions.backcompat(res)
|
||||
|
||||
for key in skip_fields:
|
||||
@ -456,7 +474,7 @@ def get_override_settings(params, *, skip_fields=None):
|
||||
|
||||
def connect_paste(button, paste_fields, input_comp, override_settings_component, tabname):
|
||||
def paste_func(prompt):
|
||||
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
|
||||
if not prompt and not shared.cmd_opts.hide_ui_dir_config and not shared.cmd_opts.no_prompt_history:
|
||||
filename = os.path.join(data_path, "params.txt")
|
||||
try:
|
||||
with open(filename, "r", encoding="utf8") as file:
|
||||
@ -470,7 +488,11 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
|
||||
|
||||
for output, key in paste_fields:
|
||||
if callable(key):
|
||||
v = key(params)
|
||||
try:
|
||||
v = key(params)
|
||||
except Exception:
|
||||
errors.report(f"Error executing {key}", exc_info=True)
|
||||
v = None
|
||||
else:
|
||||
v = params.get(key, None)
|
||||
|
||||
|
@ -5,6 +5,8 @@ import re
|
||||
|
||||
v160 = version.parse("1.6.0")
|
||||
v170_tsnr = version.parse("v1.7.0-225")
|
||||
v180 = version.parse("1.8.0")
|
||||
v180_hr_styles = version.parse("1.8.0-139")
|
||||
|
||||
|
||||
def parse_version(text):
|
||||
@ -40,3 +42,5 @@ def backcompat(d):
|
||||
if ver < v170_tsnr:
|
||||
d["Downcast alphas_cumprod"] = True
|
||||
|
||||
if ver < v180 and d.get('Refiner'):
|
||||
d["Refiner switch by sampling steps"] = True
|
||||
|
@ -51,6 +51,7 @@ def check_versions():
|
||||
def initialize():
|
||||
from modules import initialize_util
|
||||
initialize_util.fix_torch_version()
|
||||
initialize_util.fix_pytorch_lightning()
|
||||
initialize_util.fix_asyncio_event_loop_policy()
|
||||
initialize_util.validate_tls_options()
|
||||
initialize_util.configure_sigint_handler()
|
||||
@ -109,7 +110,7 @@ def initialize_rest(*, reload_script_modules=False):
|
||||
with startup_timer.subcategory("load scripts"):
|
||||
scripts.load_scripts()
|
||||
|
||||
if reload_script_modules:
|
||||
if reload_script_modules and shared.opts.enable_reloading_ui_scripts:
|
||||
for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
|
||||
importlib.reload(module)
|
||||
startup_timer.record("reload script modules")
|
||||
@ -139,7 +140,7 @@ def initialize_rest(*, reload_script_modules=False):
|
||||
"""
|
||||
Accesses shared.sd_model property to load model.
|
||||
After it's available, if it has been loaded before this access by some extension,
|
||||
its optimization may be None because the list of optimizaers has neet been filled
|
||||
its optimization may be None because the list of optimizers has not been filled
|
||||
by that time, so we apply optimization again.
|
||||
"""
|
||||
from modules import devices
|
||||
|
@ -24,6 +24,13 @@ def fix_torch_version():
|
||||
torch.__long_version__ = torch.__version__
|
||||
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
||||
|
||||
def fix_pytorch_lightning():
|
||||
# Checks if pytorch_lightning.utilities.distributed already exists in the sys.modules cache
|
||||
if 'pytorch_lightning.utilities.distributed' not in sys.modules:
|
||||
import pytorch_lightning
|
||||
# Lets the user know that the library was not found and then will set it to pytorch_lightning.utilities.rank_zero
|
||||
print("Pytorch_lightning.distributed not found, attempting pytorch_lightning.rank_zero")
|
||||
sys.modules["pytorch_lightning.utilities.distributed"] = pytorch_lightning.utilities.rank_zero
|
||||
|
||||
def fix_asyncio_event_loop_policy():
|
||||
"""
|
||||
|
@ -55,7 +55,7 @@ and delete current Python and "venv" folder in WebUI's directory.
|
||||
|
||||
You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3106/
|
||||
|
||||
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases" if is_windows else ""}
|
||||
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre" if is_windows else ""}
|
||||
|
||||
Use --skip-python-version-check to suppress this warning.
|
||||
""")
|
||||
|
@ -12,7 +12,7 @@ log = logging.getLogger(__name__)
|
||||
|
||||
# before torch version 1.13, has_mps is only available in nightly pytorch and macOS 12.3+,
|
||||
# use check `getattr` and try it for compatibility.
|
||||
# in torch version 1.13, backends.mps.is_available() and backends.mps.is_built() are introduced in to check mps availabilty,
|
||||
# in torch version 1.13, backends.mps.is_available() and backends.mps.is_built() are introduced in to check mps availability,
|
||||
# since torch 2.0.1+ nightly build, getattr(torch, 'has_mps', False) was deprecated, see https://github.com/pytorch/pytorch/pull/103279
|
||||
def check_for_mps() -> bool:
|
||||
if version.parse(torch.__version__) <= version.parse("2.0.1"):
|
||||
|
@ -1,17 +1,39 @@
|
||||
from PIL import Image, ImageFilter, ImageOps
|
||||
|
||||
|
||||
def get_crop_region(mask, pad=0):
|
||||
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
|
||||
For example, if a user has painted the top-right part of a 512x512 image, the result may be (256, 0, 512, 256)"""
|
||||
mask_img = mask if isinstance(mask, Image.Image) else Image.fromarray(mask)
|
||||
box = mask_img.getbbox()
|
||||
if box:
|
||||
def get_crop_region_v2(mask, pad=0):
|
||||
"""
|
||||
Finds a rectangular region that contains all masked ares in a mask.
|
||||
Returns None if mask is completely black mask (all 0)
|
||||
|
||||
Parameters:
|
||||
mask: PIL.Image.Image L mode or numpy 1d array
|
||||
pad: int number of pixels that the region will be extended on all sides
|
||||
Returns: (x1, y1, x2, y2) | None
|
||||
|
||||
Introduced post 1.9.0
|
||||
"""
|
||||
mask = mask if isinstance(mask, Image.Image) else Image.fromarray(mask)
|
||||
if box := mask.getbbox():
|
||||
x1, y1, x2, y2 = box
|
||||
else: # when no box is found
|
||||
x1, y1 = mask_img.size
|
||||
x2 = y2 = 0
|
||||
return max(x1 - pad, 0), max(y1 - pad, 0), min(x2 + pad, mask_img.size[0]), min(y2 + pad, mask_img.size[1])
|
||||
return (max(x1 - pad, 0), max(y1 - pad, 0), min(x2 + pad, mask.size[0]), min(y2 + pad, mask.size[1])) if pad else box
|
||||
|
||||
|
||||
def get_crop_region(mask, pad=0):
|
||||
"""
|
||||
Same function as get_crop_region_v2 but handles completely black mask (all 0) differently
|
||||
when mask all black still return coordinates but the coordinates may be invalid ie x2>x1 or y2>y1
|
||||
Notes: it is possible for the coordinates to be "valid" again if pad size is sufficiently large
|
||||
(mask_size.x-pad, mask_size.y-pad, pad, pad)
|
||||
|
||||
Extension developer should use get_crop_region_v2 instead unless for compatibility considerations.
|
||||
"""
|
||||
mask = mask if isinstance(mask, Image.Image) else Image.fromarray(mask)
|
||||
if box := get_crop_region_v2(mask, pad):
|
||||
return box
|
||||
x1, y1 = mask.size
|
||||
x2 = y2 = 0
|
||||
return max(x1 - pad, 0), max(y1 - pad, 0), min(x2 + pad, mask.size[0]), min(y2 + pad, mask.size[1])
|
||||
|
||||
|
||||
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
|
||||
|
@ -110,7 +110,7 @@ def load_upscalers():
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
datas = []
|
||||
data = []
|
||||
commandline_options = vars(shared.cmd_opts)
|
||||
|
||||
# some of upscaler classes will not go away after reloading their modules, and we'll end
|
||||
@ -129,10 +129,10 @@ def load_upscalers():
|
||||
scaler = cls(commandline_model_path)
|
||||
scaler.user_path = commandline_model_path
|
||||
scaler.model_download_path = commandline_model_path or scaler.model_path
|
||||
datas += scaler.scalers
|
||||
data += scaler.scalers
|
||||
|
||||
shared.sd_upscalers = sorted(
|
||||
datas,
|
||||
data,
|
||||
# Special case for UpscalerNone keeps it at the beginning of the list.
|
||||
key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
|
||||
)
|
||||
|
@ -341,7 +341,7 @@ class DDPM(pl.LightningModule):
|
||||
elif self.parameterization == "x0":
|
||||
target = x_start
|
||||
else:
|
||||
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
||||
raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")
|
||||
|
||||
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
||||
|
||||
@ -901,7 +901,7 @@ class LatentDiffusion(DDPM):
|
||||
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
||||
|
||||
if isinstance(cond, dict):
|
||||
# hybrid case, cond is exptected to be a dict
|
||||
# hybrid case, cond is expected to be a dict
|
||||
pass
|
||||
else:
|
||||
if not isinstance(cond, list):
|
||||
@ -937,7 +937,7 @@ class LatentDiffusion(DDPM):
|
||||
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
||||
|
||||
elif self.cond_stage_key == 'coordinates_bbox':
|
||||
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
||||
assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size'
|
||||
|
||||
# assuming padding of unfold is always 0 and its dilation is always 1
|
||||
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
||||
@ -947,7 +947,7 @@ class LatentDiffusion(DDPM):
|
||||
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
||||
rescale_latent = 2 ** (num_downs)
|
||||
|
||||
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
||||
# get top left positions of patches as conforming for the bbbox tokenizer, therefore we
|
||||
# need to rescale the tl patch coordinates to be in between (0,1)
|
||||
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
||||
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
||||
|
@ -240,6 +240,9 @@ class Options:
|
||||
|
||||
item_categories = {}
|
||||
for item in self.data_labels.values():
|
||||
if item.section[0] is None:
|
||||
continue
|
||||
|
||||
category = categories.mapping.get(item.category_id)
|
||||
category = "Uncategorized" if category is None else category.label
|
||||
if category not in item_categories:
|
||||
|
@ -32,6 +32,6 @@ models_path = os.path.join(data_path, "models")
|
||||
extensions_dir = os.path.join(data_path, "extensions")
|
||||
extensions_builtin_dir = os.path.join(script_path, "extensions-builtin")
|
||||
config_states_dir = os.path.join(script_path, "config_states")
|
||||
default_output_dir = os.path.join(data_path, "output")
|
||||
default_output_dir = os.path.join(data_path, "outputs")
|
||||
|
||||
roboto_ttf_file = os.path.join(modules_path, 'Roboto-Regular.ttf')
|
||||
|
@ -17,10 +17,10 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
|
||||
if extras_mode == 1:
|
||||
for img in image_folder:
|
||||
if isinstance(img, Image.Image):
|
||||
image = img
|
||||
image = images.fix_image(img)
|
||||
fn = ''
|
||||
else:
|
||||
image = Image.open(os.path.abspath(img.name))
|
||||
image = images.read(os.path.abspath(img.name))
|
||||
fn = os.path.splitext(img.orig_name)[0]
|
||||
yield image, fn
|
||||
elif extras_mode == 2:
|
||||
@ -56,7 +56,7 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
|
||||
|
||||
if isinstance(image_placeholder, str):
|
||||
try:
|
||||
image_data = Image.open(image_placeholder)
|
||||
image_data = images.read(image_placeholder)
|
||||
except Exception:
|
||||
continue
|
||||
else:
|
||||
@ -66,7 +66,7 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
|
||||
if parameters:
|
||||
existing_pnginfo["parameters"] = parameters
|
||||
|
||||
initial_pp = scripts_postprocessing.PostprocessedImage(image_data.convert("RGB"))
|
||||
initial_pp = scripts_postprocessing.PostprocessedImage(image_data if image_data.mode in ("RGBA", "RGB") else image_data.convert("RGB"))
|
||||
|
||||
scripts.scripts_postproc.run(initial_pp, args)
|
||||
|
||||
@ -122,8 +122,6 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
|
||||
if extras_mode != 2 or show_extras_results:
|
||||
outputs.append(pp.image)
|
||||
|
||||
image_data.close()
|
||||
|
||||
devices.torch_gc()
|
||||
shared.state.end()
|
||||
return outputs, ui_common.plaintext_to_html(infotext), ''
|
||||
@ -133,13 +131,15 @@ def run_postprocessing_webui(id_task, *args, **kwargs):
|
||||
return run_postprocessing(*args, **kwargs)
|
||||
|
||||
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
|
||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True, max_side_length: int = 0):
|
||||
"""old handler for API"""
|
||||
|
||||
args = scripts.scripts_postproc.create_args_for_run({
|
||||
"Upscale": {
|
||||
"upscale_enabled": True,
|
||||
"upscale_mode": resize_mode,
|
||||
"upscale_by": upscaling_resize,
|
||||
"max_side_length": max_side_length,
|
||||
"upscale_to_width": upscaling_resize_w,
|
||||
"upscale_to_height": upscaling_resize_h,
|
||||
"upscale_crop": upscaling_crop,
|
||||
|
@ -152,6 +152,7 @@ class StableDiffusionProcessing:
|
||||
seed_resize_from_w: int = -1
|
||||
seed_enable_extras: bool = True
|
||||
sampler_name: str = None
|
||||
scheduler: str = None
|
||||
batch_size: int = 1
|
||||
n_iter: int = 1
|
||||
steps: int = 50
|
||||
@ -607,7 +608,7 @@ class Processed:
|
||||
"version": self.version,
|
||||
}
|
||||
|
||||
return json.dumps(obj)
|
||||
return json.dumps(obj, default=lambda o: None)
|
||||
|
||||
def infotext(self, p: StableDiffusionProcessing, index):
|
||||
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
|
||||
@ -703,7 +704,53 @@ def program_version():
|
||||
|
||||
|
||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
|
||||
if index is None:
|
||||
"""
|
||||
this function is used to generate the infotext that is stored in the generated images, it's contains the parameters that are required to generate the imagee
|
||||
Args:
|
||||
p: StableDiffusionProcessing
|
||||
all_prompts: list[str]
|
||||
all_seeds: list[int]
|
||||
all_subseeds: list[int]
|
||||
comments: list[str]
|
||||
iteration: int
|
||||
position_in_batch: int
|
||||
use_main_prompt: bool
|
||||
index: int
|
||||
all_negative_prompts: list[str]
|
||||
|
||||
Returns: str
|
||||
|
||||
Extra generation params
|
||||
p.extra_generation_params dictionary allows for additional parameters to be added to the infotext
|
||||
this can be use by the base webui or extensions.
|
||||
To add a new entry, add a new key value pair, the dictionary key will be used as the key of the parameter in the infotext
|
||||
the value generation_params can be defined as:
|
||||
- str | None
|
||||
- List[str|None]
|
||||
- callable func(**kwargs) -> str | None
|
||||
|
||||
When defined as a string, it will be used as without extra processing; this is this most common use case.
|
||||
|
||||
Defining as a list allows for parameter that changes across images in the job, for example, the 'Seed' parameter.
|
||||
The list should have the same length as the total number of images in the entire job.
|
||||
|
||||
Defining as a callable function allows parameter cannot be generated earlier or when extra logic is required.
|
||||
For example 'Hires prompt', due to reasons the hr_prompt might be changed by process in the pipeline or extensions
|
||||
and may vary across different images, defining as a static string or list would not work.
|
||||
|
||||
The function takes locals() as **kwargs, as such will have access to variables like 'p' and 'index'.
|
||||
the base signature of the function should be:
|
||||
func(**kwargs) -> str | None
|
||||
optionally it can have additional arguments that will be used in the function:
|
||||
func(p, index, **kwargs) -> str | None
|
||||
note: for better future compatibility even though this function will have access to all variables in the locals(),
|
||||
it is recommended to only use the arguments present in the function signature of create_infotext.
|
||||
For actual implementation examples, see StableDiffusionProcessingTxt2Img.init > get_hr_prompt.
|
||||
"""
|
||||
|
||||
if use_main_prompt:
|
||||
index = 0
|
||||
elif index is None:
|
||||
index = position_in_batch + iteration * p.batch_size
|
||||
|
||||
if all_negative_prompts is None:
|
||||
@ -714,6 +761,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
token_merging_ratio = p.get_token_merging_ratio()
|
||||
token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
|
||||
|
||||
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
|
||||
negative_prompt = p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]
|
||||
|
||||
uses_ensd = opts.eta_noise_seed_delta != 0
|
||||
if uses_ensd:
|
||||
uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
|
||||
@ -721,6 +771,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
generation_params = {
|
||||
"Steps": p.steps,
|
||||
"Sampler": p.sampler_name,
|
||||
"Schedule type": p.scheduler,
|
||||
"CFG scale": p.cfg_scale,
|
||||
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
|
||||
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
|
||||
@ -750,10 +801,19 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
"User": p.user if opts.add_user_name_to_info else None,
|
||||
}
|
||||
|
||||
for key, value in generation_params.items():
|
||||
try:
|
||||
if isinstance(value, list):
|
||||
generation_params[key] = value[index]
|
||||
elif callable(value):
|
||||
generation_params[key] = value(**locals())
|
||||
except Exception:
|
||||
errors.report(f'Error creating infotext for key "{key}"', exc_info=True)
|
||||
generation_params[key] = None
|
||||
|
||||
generation_params_text = ", ".join([k if k == v else f'{k}: {infotext_utils.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||
|
||||
prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
|
||||
negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
|
||||
negative_prompt_text = f"\nNegative prompt: {negative_prompt}" if negative_prompt else ""
|
||||
|
||||
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||
|
||||
@ -896,22 +956,22 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.scripts is not None:
|
||||
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
|
||||
|
||||
p.setup_conds()
|
||||
|
||||
p.extra_generation_params.update(model_hijack.extra_generation_params)
|
||||
|
||||
# params.txt should be saved after scripts.process_batch, since the
|
||||
# infotext could be modified by that callback
|
||||
# Example: a wildcard processed by process_batch sets an extra model
|
||||
# strength, which is saved as "Model Strength: 1.0" in the infotext
|
||||
if n == 0:
|
||||
if n == 0 and not cmd_opts.no_prompt_history:
|
||||
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
|
||||
processed = Processed(p, [])
|
||||
file.write(processed.infotext(p, 0))
|
||||
|
||||
p.setup_conds()
|
||||
|
||||
for comment in model_hijack.comments:
|
||||
p.comment(comment)
|
||||
|
||||
p.extra_generation_params.update(model_hijack.extra_generation_params)
|
||||
|
||||
if p.n_iter > 1:
|
||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||
|
||||
@ -1106,6 +1166,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
hr_resize_y: int = 0
|
||||
hr_checkpoint_name: str = None
|
||||
hr_sampler_name: str = None
|
||||
hr_scheduler: str = None
|
||||
hr_prompt: str = ''
|
||||
hr_negative_prompt: str = ''
|
||||
force_task_id: str = None
|
||||
@ -1194,11 +1255,21 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
|
||||
self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
|
||||
|
||||
if tuple(self.hr_prompt) != tuple(self.prompt):
|
||||
self.extra_generation_params["Hires prompt"] = self.hr_prompt
|
||||
def get_hr_prompt(p, index, prompt_text, **kwargs):
|
||||
hr_prompt = p.all_hr_prompts[index]
|
||||
return hr_prompt if hr_prompt != prompt_text else None
|
||||
|
||||
if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
|
||||
self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
|
||||
def get_hr_negative_prompt(p, index, negative_prompt, **kwargs):
|
||||
hr_negative_prompt = p.all_hr_negative_prompts[index]
|
||||
return hr_negative_prompt if hr_negative_prompt != negative_prompt else None
|
||||
|
||||
self.extra_generation_params["Hires prompt"] = get_hr_prompt
|
||||
self.extra_generation_params["Hires negative prompt"] = get_hr_negative_prompt
|
||||
|
||||
self.extra_generation_params["Hires schedule type"] = None # to be set in sd_samplers_kdiffusion.py
|
||||
|
||||
if self.hr_scheduler is None:
|
||||
self.hr_scheduler = self.scheduler
|
||||
|
||||
self.latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
||||
if self.enable_hr and self.latent_scale_mode is None:
|
||||
@ -1540,16 +1611,23 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.inpaint_full_res:
|
||||
self.mask_for_overlay = image_mask
|
||||
mask = image_mask.convert('L')
|
||||
crop_region = masking.get_crop_region(mask, self.inpaint_full_res_padding)
|
||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||
x1, y1, x2, y2 = crop_region
|
||||
|
||||
mask = mask.crop(crop_region)
|
||||
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||
|
||||
self.extra_generation_params["Inpaint area"] = "Only masked"
|
||||
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
|
||||
crop_region = masking.get_crop_region_v2(mask, self.inpaint_full_res_padding)
|
||||
if crop_region:
|
||||
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
|
||||
x1, y1, x2, y2 = crop_region
|
||||
mask = mask.crop(crop_region)
|
||||
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||
self.extra_generation_params["Inpaint area"] = "Only masked"
|
||||
self.extra_generation_params["Masked area padding"] = self.inpaint_full_res_padding
|
||||
else:
|
||||
crop_region = None
|
||||
image_mask = None
|
||||
self.mask_for_overlay = None
|
||||
self.inpaint_full_res = False
|
||||
massage = 'Unable to perform "Inpaint Only mask" because mask is blank, switch to img2img mode.'
|
||||
model_hijack.comments.append(massage)
|
||||
logging.info(massage)
|
||||
else:
|
||||
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
||||
np_mask = np.array(image_mask)
|
||||
@ -1577,6 +1655,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
||||
|
||||
if image_mask is not None:
|
||||
if self.mask_for_overlay.size != (image.width, image.height):
|
||||
self.mask_for_overlay = images.resize_image(self.resize_mode, self.mask_for_overlay, image.width, image.height)
|
||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
|
||||
|
||||
|
@ -26,6 +26,13 @@ class ScriptStripComments(scripts.Script):
|
||||
p.main_prompt = strip_comments(p.main_prompt)
|
||||
p.main_negative_prompt = strip_comments(p.main_negative_prompt)
|
||||
|
||||
if getattr(p, 'enable_hr', False):
|
||||
p.all_hr_prompts = [strip_comments(x) for x in p.all_hr_prompts]
|
||||
p.all_hr_negative_prompts = [strip_comments(x) for x in p.all_hr_negative_prompts]
|
||||
|
||||
p.hr_prompt = strip_comments(p.hr_prompt)
|
||||
p.hr_negative_prompt = strip_comments(p.hr_negative_prompt)
|
||||
|
||||
|
||||
def before_token_counter(params: script_callbacks.BeforeTokenCounterParams):
|
||||
if not shared.opts.enable_prompt_comments:
|
||||
|
45
modules/processing_scripts/sampler.py
Normal file
45
modules/processing_scripts/sampler.py
Normal file
@ -0,0 +1,45 @@
|
||||
import gradio as gr
|
||||
|
||||
from modules import scripts, sd_samplers, sd_schedulers, shared
|
||||
from modules.infotext_utils import PasteField
|
||||
from modules.ui_components import FormRow, FormGroup
|
||||
|
||||
|
||||
class ScriptSampler(scripts.ScriptBuiltinUI):
|
||||
section = "sampler"
|
||||
|
||||
def __init__(self):
|
||||
self.steps = None
|
||||
self.sampler_name = None
|
||||
self.scheduler = None
|
||||
|
||||
def title(self):
|
||||
return "Sampler"
|
||||
|
||||
def ui(self, is_img2img):
|
||||
sampler_names = [x.name for x in sd_samplers.visible_samplers()]
|
||||
scheduler_names = [x.label for x in sd_schedulers.schedulers]
|
||||
|
||||
if shared.opts.samplers_in_dropdown:
|
||||
with FormRow(elem_id=f"sampler_selection_{self.tabname}"):
|
||||
self.sampler_name = gr.Dropdown(label='Sampling method', elem_id=f"{self.tabname}_sampling", choices=sampler_names, value=sampler_names[0])
|
||||
self.scheduler = gr.Dropdown(label='Schedule type', elem_id=f"{self.tabname}_scheduler", choices=scheduler_names, value=scheduler_names[0])
|
||||
self.steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{self.tabname}_steps", label="Sampling steps", value=20)
|
||||
else:
|
||||
with FormGroup(elem_id=f"sampler_selection_{self.tabname}"):
|
||||
self.steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{self.tabname}_steps", label="Sampling steps", value=20)
|
||||
self.sampler_name = gr.Radio(label='Sampling method', elem_id=f"{self.tabname}_sampling", choices=sampler_names, value=sampler_names[0])
|
||||
self.scheduler = gr.Dropdown(label='Schedule type', elem_id=f"{self.tabname}_scheduler", choices=scheduler_names, value=scheduler_names[0])
|
||||
|
||||
self.infotext_fields = [
|
||||
PasteField(self.steps, "Steps", api="steps"),
|
||||
PasteField(self.sampler_name, sd_samplers.get_sampler_from_infotext, api="sampler_name"),
|
||||
PasteField(self.scheduler, sd_samplers.get_scheduler_from_infotext, api="scheduler"),
|
||||
]
|
||||
|
||||
return self.steps, self.sampler_name, self.scheduler
|
||||
|
||||
def setup(self, p, steps, sampler_name, scheduler):
|
||||
p.steps = steps
|
||||
p.sampler_name = sampler_name
|
||||
p.scheduler = scheduler
|
@ -34,7 +34,7 @@ def randn_local(seed, shape):
|
||||
|
||||
|
||||
def randn_like(x):
|
||||
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
|
||||
"""Generate a tensor with random numbers from a normal distribution using the previously initialized generator.
|
||||
|
||||
Use either randn() or manual_seed() to initialize the generator."""
|
||||
|
||||
@ -48,7 +48,7 @@ def randn_like(x):
|
||||
|
||||
|
||||
def randn_without_seed(shape, generator=None):
|
||||
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
|
||||
"""Generate a tensor with random numbers from a normal distribution using the previously initialized generator.
|
||||
|
||||
Use either randn() or manual_seed() to initialize the generator."""
|
||||
|
||||
|
@ -1,13 +1,14 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import dataclasses
|
||||
import inspect
|
||||
import os
|
||||
from collections import namedtuple
|
||||
from typing import Optional, Any
|
||||
|
||||
from fastapi import FastAPI
|
||||
from gradio import Blocks
|
||||
|
||||
from modules import errors, timer
|
||||
from modules import errors, timer, extensions, shared, util
|
||||
|
||||
|
||||
def report_exception(c, job):
|
||||
@ -116,7 +117,105 @@ class BeforeTokenCounterParams:
|
||||
is_positive: bool = True
|
||||
|
||||
|
||||
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
|
||||
@dataclasses.dataclass
|
||||
class ScriptCallback:
|
||||
script: str
|
||||
callback: any
|
||||
name: str = "unnamed"
|
||||
|
||||
|
||||
def add_callback(callbacks, fun, *, name=None, category='unknown', filename=None):
|
||||
if filename is None:
|
||||
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||
filename = stack[0].filename if stack else 'unknown file'
|
||||
|
||||
extension = extensions.find_extension(filename)
|
||||
extension_name = extension.canonical_name if extension else 'base'
|
||||
|
||||
callback_name = f"{extension_name}/{os.path.basename(filename)}/{category}"
|
||||
if name is not None:
|
||||
callback_name += f'/{name}'
|
||||
|
||||
unique_callback_name = callback_name
|
||||
for index in range(1000):
|
||||
existing = any(x.name == unique_callback_name for x in callbacks)
|
||||
if not existing:
|
||||
break
|
||||
|
||||
unique_callback_name = f'{callback_name}-{index+1}'
|
||||
|
||||
callbacks.append(ScriptCallback(filename, fun, unique_callback_name))
|
||||
|
||||
|
||||
def sort_callbacks(category, unordered_callbacks, *, enable_user_sort=True):
|
||||
callbacks = unordered_callbacks.copy()
|
||||
callback_lookup = {x.name: x for x in callbacks}
|
||||
dependencies = {}
|
||||
|
||||
order_instructions = {}
|
||||
for extension in extensions.extensions:
|
||||
for order_instruction in extension.metadata.list_callback_order_instructions():
|
||||
if order_instruction.name in callback_lookup:
|
||||
if order_instruction.name not in order_instructions:
|
||||
order_instructions[order_instruction.name] = []
|
||||
|
||||
order_instructions[order_instruction.name].append(order_instruction)
|
||||
|
||||
if order_instructions:
|
||||
for callback in callbacks:
|
||||
dependencies[callback.name] = []
|
||||
|
||||
for callback in callbacks:
|
||||
for order_instruction in order_instructions.get(callback.name, []):
|
||||
for after in order_instruction.after:
|
||||
if after not in callback_lookup:
|
||||
continue
|
||||
|
||||
dependencies[callback.name].append(after)
|
||||
|
||||
for before in order_instruction.before:
|
||||
if before not in callback_lookup:
|
||||
continue
|
||||
|
||||
dependencies[before].append(callback.name)
|
||||
|
||||
sorted_names = util.topological_sort(dependencies)
|
||||
callbacks = [callback_lookup[x] for x in sorted_names]
|
||||
|
||||
if enable_user_sort:
|
||||
for name in reversed(getattr(shared.opts, 'prioritized_callbacks_' + category, [])):
|
||||
index = next((i for i, callback in enumerate(callbacks) if callback.name == name), None)
|
||||
if index is not None:
|
||||
callbacks.insert(0, callbacks.pop(index))
|
||||
|
||||
return callbacks
|
||||
|
||||
|
||||
def ordered_callbacks(category, unordered_callbacks=None, *, enable_user_sort=True):
|
||||
if unordered_callbacks is None:
|
||||
unordered_callbacks = callback_map.get('callbacks_' + category, [])
|
||||
|
||||
if not enable_user_sort:
|
||||
return sort_callbacks(category, unordered_callbacks, enable_user_sort=False)
|
||||
|
||||
callbacks = ordered_callbacks_map.get(category)
|
||||
if callbacks is not None and len(callbacks) == len(unordered_callbacks):
|
||||
return callbacks
|
||||
|
||||
callbacks = sort_callbacks(category, unordered_callbacks)
|
||||
|
||||
ordered_callbacks_map[category] = callbacks
|
||||
return callbacks
|
||||
|
||||
|
||||
def enumerate_callbacks():
|
||||
for category, callbacks in callback_map.items():
|
||||
if category.startswith('callbacks_'):
|
||||
category = category[10:]
|
||||
|
||||
yield category, callbacks
|
||||
|
||||
|
||||
callback_map = dict(
|
||||
callbacks_app_started=[],
|
||||
callbacks_model_loaded=[],
|
||||
@ -141,14 +240,18 @@ callback_map = dict(
|
||||
callbacks_before_token_counter=[],
|
||||
)
|
||||
|
||||
ordered_callbacks_map = {}
|
||||
|
||||
|
||||
def clear_callbacks():
|
||||
for callback_list in callback_map.values():
|
||||
callback_list.clear()
|
||||
|
||||
ordered_callbacks_map.clear()
|
||||
|
||||
|
||||
def app_started_callback(demo: Optional[Blocks], app: FastAPI):
|
||||
for c in callback_map['callbacks_app_started']:
|
||||
for c in ordered_callbacks('app_started'):
|
||||
try:
|
||||
c.callback(demo, app)
|
||||
timer.startup_timer.record(os.path.basename(c.script))
|
||||
@ -157,7 +260,7 @@ def app_started_callback(demo: Optional[Blocks], app: FastAPI):
|
||||
|
||||
|
||||
def app_reload_callback():
|
||||
for c in callback_map['callbacks_on_reload']:
|
||||
for c in ordered_callbacks('on_reload'):
|
||||
try:
|
||||
c.callback()
|
||||
except Exception:
|
||||
@ -165,7 +268,7 @@ def app_reload_callback():
|
||||
|
||||
|
||||
def model_loaded_callback(sd_model):
|
||||
for c in callback_map['callbacks_model_loaded']:
|
||||
for c in ordered_callbacks('model_loaded'):
|
||||
try:
|
||||
c.callback(sd_model)
|
||||
except Exception:
|
||||
@ -175,7 +278,7 @@ def model_loaded_callback(sd_model):
|
||||
def ui_tabs_callback():
|
||||
res = []
|
||||
|
||||
for c in callback_map['callbacks_ui_tabs']:
|
||||
for c in ordered_callbacks('ui_tabs'):
|
||||
try:
|
||||
res += c.callback() or []
|
||||
except Exception:
|
||||
@ -185,7 +288,7 @@ def ui_tabs_callback():
|
||||
|
||||
|
||||
def ui_train_tabs_callback(params: UiTrainTabParams):
|
||||
for c in callback_map['callbacks_ui_train_tabs']:
|
||||
for c in ordered_callbacks('ui_train_tabs'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -193,7 +296,7 @@ def ui_train_tabs_callback(params: UiTrainTabParams):
|
||||
|
||||
|
||||
def ui_settings_callback():
|
||||
for c in callback_map['callbacks_ui_settings']:
|
||||
for c in ordered_callbacks('ui_settings'):
|
||||
try:
|
||||
c.callback()
|
||||
except Exception:
|
||||
@ -201,7 +304,7 @@ def ui_settings_callback():
|
||||
|
||||
|
||||
def before_image_saved_callback(params: ImageSaveParams):
|
||||
for c in callback_map['callbacks_before_image_saved']:
|
||||
for c in ordered_callbacks('before_image_saved'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -209,7 +312,7 @@ def before_image_saved_callback(params: ImageSaveParams):
|
||||
|
||||
|
||||
def image_saved_callback(params: ImageSaveParams):
|
||||
for c in callback_map['callbacks_image_saved']:
|
||||
for c in ordered_callbacks('image_saved'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -217,7 +320,7 @@ def image_saved_callback(params: ImageSaveParams):
|
||||
|
||||
|
||||
def extra_noise_callback(params: ExtraNoiseParams):
|
||||
for c in callback_map['callbacks_extra_noise']:
|
||||
for c in ordered_callbacks('extra_noise'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -225,7 +328,7 @@ def extra_noise_callback(params: ExtraNoiseParams):
|
||||
|
||||
|
||||
def cfg_denoiser_callback(params: CFGDenoiserParams):
|
||||
for c in callback_map['callbacks_cfg_denoiser']:
|
||||
for c in ordered_callbacks('cfg_denoiser'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -233,7 +336,7 @@ def cfg_denoiser_callback(params: CFGDenoiserParams):
|
||||
|
||||
|
||||
def cfg_denoised_callback(params: CFGDenoisedParams):
|
||||
for c in callback_map['callbacks_cfg_denoised']:
|
||||
for c in ordered_callbacks('cfg_denoised'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -241,7 +344,7 @@ def cfg_denoised_callback(params: CFGDenoisedParams):
|
||||
|
||||
|
||||
def cfg_after_cfg_callback(params: AfterCFGCallbackParams):
|
||||
for c in callback_map['callbacks_cfg_after_cfg']:
|
||||
for c in ordered_callbacks('cfg_after_cfg'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -249,7 +352,7 @@ def cfg_after_cfg_callback(params: AfterCFGCallbackParams):
|
||||
|
||||
|
||||
def before_component_callback(component, **kwargs):
|
||||
for c in callback_map['callbacks_before_component']:
|
||||
for c in ordered_callbacks('before_component'):
|
||||
try:
|
||||
c.callback(component, **kwargs)
|
||||
except Exception:
|
||||
@ -257,7 +360,7 @@ def before_component_callback(component, **kwargs):
|
||||
|
||||
|
||||
def after_component_callback(component, **kwargs):
|
||||
for c in callback_map['callbacks_after_component']:
|
||||
for c in ordered_callbacks('after_component'):
|
||||
try:
|
||||
c.callback(component, **kwargs)
|
||||
except Exception:
|
||||
@ -265,7 +368,7 @@ def after_component_callback(component, **kwargs):
|
||||
|
||||
|
||||
def image_grid_callback(params: ImageGridLoopParams):
|
||||
for c in callback_map['callbacks_image_grid']:
|
||||
for c in ordered_callbacks('image_grid'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
@ -273,7 +376,7 @@ def image_grid_callback(params: ImageGridLoopParams):
|
||||
|
||||
|
||||
def infotext_pasted_callback(infotext: str, params: dict[str, Any]):
|
||||
for c in callback_map['callbacks_infotext_pasted']:
|
||||
for c in ordered_callbacks('infotext_pasted'):
|
||||
try:
|
||||
c.callback(infotext, params)
|
||||
except Exception:
|
||||
@ -281,7 +384,7 @@ def infotext_pasted_callback(infotext: str, params: dict[str, Any]):
|
||||
|
||||
|
||||
def script_unloaded_callback():
|
||||
for c in reversed(callback_map['callbacks_script_unloaded']):
|
||||
for c in reversed(ordered_callbacks('script_unloaded')):
|
||||
try:
|
||||
c.callback()
|
||||
except Exception:
|
||||
@ -289,7 +392,7 @@ def script_unloaded_callback():
|
||||
|
||||
|
||||
def before_ui_callback():
|
||||
for c in reversed(callback_map['callbacks_before_ui']):
|
||||
for c in reversed(ordered_callbacks('before_ui')):
|
||||
try:
|
||||
c.callback()
|
||||
except Exception:
|
||||
@ -299,7 +402,7 @@ def before_ui_callback():
|
||||
def list_optimizers_callback():
|
||||
res = []
|
||||
|
||||
for c in callback_map['callbacks_list_optimizers']:
|
||||
for c in ordered_callbacks('list_optimizers'):
|
||||
try:
|
||||
c.callback(res)
|
||||
except Exception:
|
||||
@ -311,7 +414,7 @@ def list_optimizers_callback():
|
||||
def list_unets_callback():
|
||||
res = []
|
||||
|
||||
for c in callback_map['callbacks_list_unets']:
|
||||
for c in ordered_callbacks('list_unets'):
|
||||
try:
|
||||
c.callback(res)
|
||||
except Exception:
|
||||
@ -321,20 +424,13 @@ def list_unets_callback():
|
||||
|
||||
|
||||
def before_token_counter_callback(params: BeforeTokenCounterParams):
|
||||
for c in callback_map['callbacks_before_token_counter']:
|
||||
for c in ordered_callbacks('before_token_counter'):
|
||||
try:
|
||||
c.callback(params)
|
||||
except Exception:
|
||||
report_exception(c, 'before_token_counter')
|
||||
|
||||
|
||||
def add_callback(callbacks, fun):
|
||||
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||
filename = stack[0].filename if stack else 'unknown file'
|
||||
|
||||
callbacks.append(ScriptCallback(filename, fun))
|
||||
|
||||
|
||||
def remove_current_script_callbacks():
|
||||
stack = [x for x in inspect.stack() if x.filename != __file__]
|
||||
filename = stack[0].filename if stack else 'unknown file'
|
||||
@ -343,32 +439,38 @@ def remove_current_script_callbacks():
|
||||
for callback_list in callback_map.values():
|
||||
for callback_to_remove in [cb for cb in callback_list if cb.script == filename]:
|
||||
callback_list.remove(callback_to_remove)
|
||||
for ordered_callbacks_list in ordered_callbacks_map.values():
|
||||
for callback_to_remove in [cb for cb in ordered_callbacks_list if cb.script == filename]:
|
||||
ordered_callbacks_list.remove(callback_to_remove)
|
||||
|
||||
|
||||
def remove_callbacks_for_function(callback_func):
|
||||
for callback_list in callback_map.values():
|
||||
for callback_to_remove in [cb for cb in callback_list if cb.callback == callback_func]:
|
||||
callback_list.remove(callback_to_remove)
|
||||
for ordered_callback_list in ordered_callbacks_map.values():
|
||||
for callback_to_remove in [cb for cb in ordered_callback_list if cb.callback == callback_func]:
|
||||
ordered_callback_list.remove(callback_to_remove)
|
||||
|
||||
|
||||
def on_app_started(callback):
|
||||
def on_app_started(callback, *, name=None):
|
||||
"""register a function to be called when the webui started, the gradio `Block` component and
|
||||
fastapi `FastAPI` object are passed as the arguments"""
|
||||
add_callback(callback_map['callbacks_app_started'], callback)
|
||||
add_callback(callback_map['callbacks_app_started'], callback, name=name, category='app_started')
|
||||
|
||||
|
||||
def on_before_reload(callback):
|
||||
def on_before_reload(callback, *, name=None):
|
||||
"""register a function to be called just before the server reloads."""
|
||||
add_callback(callback_map['callbacks_on_reload'], callback)
|
||||
add_callback(callback_map['callbacks_on_reload'], callback, name=name, category='on_reload')
|
||||
|
||||
|
||||
def on_model_loaded(callback):
|
||||
def on_model_loaded(callback, *, name=None):
|
||||
"""register a function to be called when the stable diffusion model is created; the model is
|
||||
passed as an argument; this function is also called when the script is reloaded. """
|
||||
add_callback(callback_map['callbacks_model_loaded'], callback)
|
||||
add_callback(callback_map['callbacks_model_loaded'], callback, name=name, category='model_loaded')
|
||||
|
||||
|
||||
def on_ui_tabs(callback):
|
||||
def on_ui_tabs(callback, *, name=None):
|
||||
"""register a function to be called when the UI is creating new tabs.
|
||||
The function must either return a None, which means no new tabs to be added, or a list, where
|
||||
each element is a tuple:
|
||||
@ -378,71 +480,71 @@ def on_ui_tabs(callback):
|
||||
title is tab text displayed to user in the UI
|
||||
elem_id is HTML id for the tab
|
||||
"""
|
||||
add_callback(callback_map['callbacks_ui_tabs'], callback)
|
||||
add_callback(callback_map['callbacks_ui_tabs'], callback, name=name, category='ui_tabs')
|
||||
|
||||
|
||||
def on_ui_train_tabs(callback):
|
||||
def on_ui_train_tabs(callback, *, name=None):
|
||||
"""register a function to be called when the UI is creating new tabs for the train tab.
|
||||
Create your new tabs with gr.Tab.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_ui_train_tabs'], callback)
|
||||
add_callback(callback_map['callbacks_ui_train_tabs'], callback, name=name, category='ui_train_tabs')
|
||||
|
||||
|
||||
def on_ui_settings(callback):
|
||||
def on_ui_settings(callback, *, name=None):
|
||||
"""register a function to be called before UI settings are populated; add your settings
|
||||
by using shared.opts.add_option(shared.OptionInfo(...)) """
|
||||
add_callback(callback_map['callbacks_ui_settings'], callback)
|
||||
add_callback(callback_map['callbacks_ui_settings'], callback, name=name, category='ui_settings')
|
||||
|
||||
|
||||
def on_before_image_saved(callback):
|
||||
def on_before_image_saved(callback, *, name=None):
|
||||
"""register a function to be called before an image is saved to a file.
|
||||
The callback is called with one argument:
|
||||
- params: ImageSaveParams - parameters the image is to be saved with. You can change fields in this object.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_before_image_saved'], callback)
|
||||
add_callback(callback_map['callbacks_before_image_saved'], callback, name=name, category='before_image_saved')
|
||||
|
||||
|
||||
def on_image_saved(callback):
|
||||
def on_image_saved(callback, *, name=None):
|
||||
"""register a function to be called after an image is saved to a file.
|
||||
The callback is called with one argument:
|
||||
- params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_image_saved'], callback)
|
||||
add_callback(callback_map['callbacks_image_saved'], callback, name=name, category='image_saved')
|
||||
|
||||
|
||||
def on_extra_noise(callback):
|
||||
def on_extra_noise(callback, *, name=None):
|
||||
"""register a function to be called before adding extra noise in img2img or hires fix;
|
||||
The callback is called with one argument:
|
||||
- params: ExtraNoiseParams - contains noise determined by seed and latent representation of image
|
||||
"""
|
||||
add_callback(callback_map['callbacks_extra_noise'], callback)
|
||||
add_callback(callback_map['callbacks_extra_noise'], callback, name=name, category='extra_noise')
|
||||
|
||||
|
||||
def on_cfg_denoiser(callback):
|
||||
def on_cfg_denoiser(callback, *, name=None):
|
||||
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
||||
The callback is called with one argument:
|
||||
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
|
||||
add_callback(callback_map['callbacks_cfg_denoiser'], callback, name=name, category='cfg_denoiser')
|
||||
|
||||
|
||||
def on_cfg_denoised(callback):
|
||||
def on_cfg_denoised(callback, *, name=None):
|
||||
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
|
||||
The callback is called with one argument:
|
||||
- params: CFGDenoisedParams - parameters to be passed to the inner model and sampling state details.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_cfg_denoised'], callback)
|
||||
add_callback(callback_map['callbacks_cfg_denoised'], callback, name=name, category='cfg_denoised')
|
||||
|
||||
|
||||
def on_cfg_after_cfg(callback):
|
||||
def on_cfg_after_cfg(callback, *, name=None):
|
||||
"""register a function to be called in the kdiffussion cfg_denoiser method after cfg calculations are completed.
|
||||
The callback is called with one argument:
|
||||
- params: AfterCFGCallbackParams - parameters to be passed to the script for post-processing after cfg calculation.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_cfg_after_cfg'], callback)
|
||||
add_callback(callback_map['callbacks_cfg_after_cfg'], callback, name=name, category='cfg_after_cfg')
|
||||
|
||||
|
||||
def on_before_component(callback):
|
||||
def on_before_component(callback, *, name=None):
|
||||
"""register a function to be called before a component is created.
|
||||
The callback is called with arguments:
|
||||
- component - gradio component that is about to be created.
|
||||
@ -451,61 +553,61 @@ def on_before_component(callback):
|
||||
Use elem_id/label fields of kwargs to figure out which component it is.
|
||||
This can be useful to inject your own components somewhere in the middle of vanilla UI.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_before_component'], callback)
|
||||
add_callback(callback_map['callbacks_before_component'], callback, name=name, category='before_component')
|
||||
|
||||
|
||||
def on_after_component(callback):
|
||||
def on_after_component(callback, *, name=None):
|
||||
"""register a function to be called after a component is created. See on_before_component for more."""
|
||||
add_callback(callback_map['callbacks_after_component'], callback)
|
||||
add_callback(callback_map['callbacks_after_component'], callback, name=name, category='after_component')
|
||||
|
||||
|
||||
def on_image_grid(callback):
|
||||
def on_image_grid(callback, *, name=None):
|
||||
"""register a function to be called before making an image grid.
|
||||
The callback is called with one argument:
|
||||
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_image_grid'], callback)
|
||||
add_callback(callback_map['callbacks_image_grid'], callback, name=name, category='image_grid')
|
||||
|
||||
|
||||
def on_infotext_pasted(callback):
|
||||
def on_infotext_pasted(callback, *, name=None):
|
||||
"""register a function to be called before applying an infotext.
|
||||
The callback is called with two arguments:
|
||||
- infotext: str - raw infotext.
|
||||
- result: dict[str, any] - parsed infotext parameters.
|
||||
"""
|
||||
add_callback(callback_map['callbacks_infotext_pasted'], callback)
|
||||
add_callback(callback_map['callbacks_infotext_pasted'], callback, name=name, category='infotext_pasted')
|
||||
|
||||
|
||||
def on_script_unloaded(callback):
|
||||
def on_script_unloaded(callback, *, name=None):
|
||||
"""register a function to be called before the script is unloaded. Any hooks/hijacks/monkeying about that
|
||||
the script did should be reverted here"""
|
||||
|
||||
add_callback(callback_map['callbacks_script_unloaded'], callback)
|
||||
add_callback(callback_map['callbacks_script_unloaded'], callback, name=name, category='script_unloaded')
|
||||
|
||||
|
||||
def on_before_ui(callback):
|
||||
def on_before_ui(callback, *, name=None):
|
||||
"""register a function to be called before the UI is created."""
|
||||
|
||||
add_callback(callback_map['callbacks_before_ui'], callback)
|
||||
add_callback(callback_map['callbacks_before_ui'], callback, name=name, category='before_ui')
|
||||
|
||||
|
||||
def on_list_optimizers(callback):
|
||||
def on_list_optimizers(callback, *, name=None):
|
||||
"""register a function to be called when UI is making a list of cross attention optimization options.
|
||||
The function will be called with one argument, a list, and shall add objects of type modules.sd_hijack_optimizations.SdOptimization
|
||||
to it."""
|
||||
|
||||
add_callback(callback_map['callbacks_list_optimizers'], callback)
|
||||
add_callback(callback_map['callbacks_list_optimizers'], callback, name=name, category='list_optimizers')
|
||||
|
||||
|
||||
def on_list_unets(callback):
|
||||
def on_list_unets(callback, *, name=None):
|
||||
"""register a function to be called when UI is making a list of alternative options for unet.
|
||||
The function will be called with one argument, a list, and shall add objects of type modules.sd_unet.SdUnetOption to it."""
|
||||
|
||||
add_callback(callback_map['callbacks_list_unets'], callback)
|
||||
add_callback(callback_map['callbacks_list_unets'], callback, name=name, category='list_unets')
|
||||
|
||||
|
||||
def on_before_token_counter(callback):
|
||||
def on_before_token_counter(callback, *, name=None):
|
||||
"""register a function to be called when UI is counting tokens for a prompt.
|
||||
The function will be called with one argument of type BeforeTokenCounterParams, and should modify its fields if necessary."""
|
||||
|
||||
add_callback(callback_map['callbacks_before_token_counter'], callback)
|
||||
add_callback(callback_map['callbacks_before_token_counter'], callback, name=name, category='before_token_counter')
|
||||
|
@ -4,11 +4,15 @@ import importlib.util
|
||||
from modules import errors
|
||||
|
||||
|
||||
loaded_scripts = {}
|
||||
|
||||
|
||||
def load_module(path):
|
||||
module_spec = importlib.util.spec_from_file_location(os.path.basename(path), path)
|
||||
module = importlib.util.module_from_spec(module_spec)
|
||||
module_spec.loader.exec_module(module)
|
||||
|
||||
loaded_scripts[path] = module
|
||||
return module
|
||||
|
||||
|
||||
|
@ -7,7 +7,9 @@ from dataclasses import dataclass
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing, errors, timer
|
||||
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing, errors, timer, util
|
||||
|
||||
topological_sort = util.topological_sort
|
||||
|
||||
AlwaysVisible = object()
|
||||
|
||||
@ -92,7 +94,7 @@ class Script:
|
||||
"""If true, the script setup will only be run in Gradio UI, not in API"""
|
||||
|
||||
controls = None
|
||||
"""A list of controls retured by the ui()."""
|
||||
"""A list of controls returned by the ui()."""
|
||||
|
||||
def title(self):
|
||||
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
|
||||
@ -109,7 +111,7 @@ class Script:
|
||||
|
||||
def show(self, is_img2img):
|
||||
"""
|
||||
is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
|
||||
is_img2img is True if this function is called for the img2img interface, and False otherwise
|
||||
|
||||
This function should return:
|
||||
- False if the script should not be shown in UI at all
|
||||
@ -138,7 +140,6 @@ class Script:
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def before_process(self, p, *args):
|
||||
"""
|
||||
This function is called very early during processing begins for AlwaysVisible scripts.
|
||||
@ -351,6 +352,9 @@ class ScriptBuiltinUI(Script):
|
||||
|
||||
return f'{tabname}{item_id}'
|
||||
|
||||
def show(self, is_img2img):
|
||||
return AlwaysVisible
|
||||
|
||||
|
||||
current_basedir = paths.script_path
|
||||
|
||||
@ -369,29 +373,6 @@ scripts_data = []
|
||||
postprocessing_scripts_data = []
|
||||
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"])
|
||||
|
||||
def topological_sort(dependencies):
|
||||
"""Accepts a dictionary mapping name to its dependencies, returns a list of names ordered according to dependencies.
|
||||
Ignores errors relating to missing dependeencies or circular dependencies
|
||||
"""
|
||||
|
||||
visited = {}
|
||||
result = []
|
||||
|
||||
def inner(name):
|
||||
visited[name] = True
|
||||
|
||||
for dep in dependencies.get(name, []):
|
||||
if dep in dependencies and dep not in visited:
|
||||
inner(dep)
|
||||
|
||||
result.append(name)
|
||||
|
||||
for depname in dependencies:
|
||||
if depname not in visited:
|
||||
inner(depname)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@dataclass
|
||||
class ScriptWithDependencies:
|
||||
@ -562,6 +543,25 @@ class ScriptRunner:
|
||||
self.paste_field_names = []
|
||||
self.inputs = [None]
|
||||
|
||||
self.callback_map = {}
|
||||
self.callback_names = [
|
||||
'before_process',
|
||||
'process',
|
||||
'before_process_batch',
|
||||
'after_extra_networks_activate',
|
||||
'process_batch',
|
||||
'postprocess',
|
||||
'postprocess_batch',
|
||||
'postprocess_batch_list',
|
||||
'post_sample',
|
||||
'on_mask_blend',
|
||||
'postprocess_image',
|
||||
'postprocess_maskoverlay',
|
||||
'postprocess_image_after_composite',
|
||||
'before_component',
|
||||
'after_component',
|
||||
]
|
||||
|
||||
self.on_before_component_elem_id = {}
|
||||
"""dict of callbacks to be called before an element is created; key=elem_id, value=list of callbacks"""
|
||||
|
||||
@ -600,6 +600,8 @@ class ScriptRunner:
|
||||
self.scripts.append(script)
|
||||
self.selectable_scripts.append(script)
|
||||
|
||||
self.callback_map.clear()
|
||||
|
||||
self.apply_on_before_component_callbacks()
|
||||
|
||||
def apply_on_before_component_callbacks(self):
|
||||
@ -737,12 +739,17 @@ class ScriptRunner:
|
||||
def onload_script_visibility(params):
|
||||
title = params.get('Script', None)
|
||||
if title:
|
||||
title_index = self.titles.index(title)
|
||||
visibility = title_index == self.script_load_ctr
|
||||
self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles)
|
||||
return gr.update(visible=visibility)
|
||||
else:
|
||||
return gr.update(visible=False)
|
||||
try:
|
||||
title_index = self.titles.index(title)
|
||||
visibility = title_index == self.script_load_ctr
|
||||
self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles)
|
||||
return gr.update(visible=visibility)
|
||||
except ValueError:
|
||||
params['Script'] = None
|
||||
massage = f'Cannot find Script: "{title}"'
|
||||
print(massage)
|
||||
gr.Warning(massage)
|
||||
return gr.update(visible=False)
|
||||
|
||||
self.infotext_fields.append((dropdown, lambda x: gr.update(value=x.get('Script', 'None'))))
|
||||
self.infotext_fields.extend([(script.group, onload_script_visibility) for script in self.selectable_scripts])
|
||||
@ -769,8 +776,42 @@ class ScriptRunner:
|
||||
|
||||
return processed
|
||||
|
||||
def list_scripts_for_method(self, method_name):
|
||||
if method_name in ('before_component', 'after_component'):
|
||||
return self.scripts
|
||||
else:
|
||||
return self.alwayson_scripts
|
||||
|
||||
def create_ordered_callbacks_list(self, method_name, *, enable_user_sort=True):
|
||||
script_list = self.list_scripts_for_method(method_name)
|
||||
category = f'script_{method_name}'
|
||||
callbacks = []
|
||||
|
||||
for script in script_list:
|
||||
if getattr(script.__class__, method_name, None) == getattr(Script, method_name, None):
|
||||
continue
|
||||
|
||||
script_callbacks.add_callback(callbacks, script, category=category, name=script.__class__.__name__, filename=script.filename)
|
||||
|
||||
return script_callbacks.sort_callbacks(category, callbacks, enable_user_sort=enable_user_sort)
|
||||
|
||||
def ordered_callbacks(self, method_name, *, enable_user_sort=True):
|
||||
script_list = self.list_scripts_for_method(method_name)
|
||||
category = f'script_{method_name}'
|
||||
|
||||
scrpts_len, callbacks = self.callback_map.get(category, (-1, None))
|
||||
|
||||
if callbacks is None or scrpts_len != len(script_list):
|
||||
callbacks = self.create_ordered_callbacks_list(method_name, enable_user_sort=enable_user_sort)
|
||||
self.callback_map[category] = len(script_list), callbacks
|
||||
|
||||
return callbacks
|
||||
|
||||
def ordered_scripts(self, method_name):
|
||||
return [x.callback for x in self.ordered_callbacks(method_name)]
|
||||
|
||||
def before_process(self, p):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('before_process'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.before_process(p, *script_args)
|
||||
@ -778,7 +819,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running before_process: {script.filename}", exc_info=True)
|
||||
|
||||
def process(self, p):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('process'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.process(p, *script_args)
|
||||
@ -786,7 +827,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running process: {script.filename}", exc_info=True)
|
||||
|
||||
def before_process_batch(self, p, **kwargs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('before_process_batch'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.before_process_batch(p, *script_args, **kwargs)
|
||||
@ -794,7 +835,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running before_process_batch: {script.filename}", exc_info=True)
|
||||
|
||||
def after_extra_networks_activate(self, p, **kwargs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('after_extra_networks_activate'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.after_extra_networks_activate(p, *script_args, **kwargs)
|
||||
@ -802,7 +843,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running after_extra_networks_activate: {script.filename}", exc_info=True)
|
||||
|
||||
def process_batch(self, p, **kwargs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('process_batch'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.process_batch(p, *script_args, **kwargs)
|
||||
@ -810,7 +851,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running process_batch: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess(self, p, processed):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('postprocess'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess(p, processed, *script_args)
|
||||
@ -818,7 +859,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running postprocess: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_batch(self, p, images, **kwargs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('postprocess_batch'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_batch(p, *script_args, images=images, **kwargs)
|
||||
@ -826,7 +867,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running postprocess_batch: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_batch_list(self, p, pp: PostprocessBatchListArgs, **kwargs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('postprocess_batch_list'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_batch_list(p, pp, *script_args, **kwargs)
|
||||
@ -834,7 +875,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True)
|
||||
|
||||
def post_sample(self, p, ps: PostSampleArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('post_sample'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.post_sample(p, ps, *script_args)
|
||||
@ -842,7 +883,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
|
||||
|
||||
def on_mask_blend(self, p, mba: MaskBlendArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('on_mask_blend'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.on_mask_blend(p, mba, *script_args)
|
||||
@ -850,7 +891,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('postprocess_image'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_image(p, pp, *script_args)
|
||||
@ -858,7 +899,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('postprocess_maskoverlay'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_maskoverlay(p, ppmo, *script_args)
|
||||
@ -866,7 +907,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_image_after_composite(self, p, pp: PostprocessImageArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('postprocess_image_after_composite'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_image_after_composite(p, pp, *script_args)
|
||||
@ -880,7 +921,7 @@ class ScriptRunner:
|
||||
except Exception:
|
||||
errors.report(f"Error running on_before_component: {script.filename}", exc_info=True)
|
||||
|
||||
for script in self.scripts:
|
||||
for script in self.ordered_scripts('before_component'):
|
||||
try:
|
||||
script.before_component(component, **kwargs)
|
||||
except Exception:
|
||||
@ -893,7 +934,7 @@ class ScriptRunner:
|
||||
except Exception:
|
||||
errors.report(f"Error running on_after_component: {script.filename}", exc_info=True)
|
||||
|
||||
for script in self.scripts:
|
||||
for script in self.ordered_scripts('after_component'):
|
||||
try:
|
||||
script.after_component(component, **kwargs)
|
||||
except Exception:
|
||||
@ -921,7 +962,7 @@ class ScriptRunner:
|
||||
self.scripts[si].args_to = args_to
|
||||
|
||||
def before_hr(self, p):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('before_hr'):
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.before_hr(p, *script_args)
|
||||
@ -929,7 +970,7 @@ class ScriptRunner:
|
||||
errors.report(f"Error running before_hr: {script.filename}", exc_info=True)
|
||||
|
||||
def setup_scrips(self, p, *, is_ui=True):
|
||||
for script in self.alwayson_scripts:
|
||||
for script in self.ordered_scripts('setup'):
|
||||
if not is_ui and script.setup_for_ui_only:
|
||||
continue
|
||||
|
||||
|
@ -143,6 +143,7 @@ class ScriptPostprocessingRunner:
|
||||
self.initialize_scripts(modules.scripts.postprocessing_scripts_data)
|
||||
|
||||
scripts_order = shared.opts.postprocessing_operation_order
|
||||
scripts_filter_out = set(shared.opts.postprocessing_disable_in_extras)
|
||||
|
||||
def script_score(name):
|
||||
for i, possible_match in enumerate(scripts_order):
|
||||
@ -151,9 +152,10 @@ class ScriptPostprocessingRunner:
|
||||
|
||||
return len(self.scripts)
|
||||
|
||||
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(self.scripts)}
|
||||
filtered_scripts = [script for script in self.scripts if script.name not in scripts_filter_out]
|
||||
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(filtered_scripts)}
|
||||
|
||||
return sorted(self.scripts, key=lambda x: script_scores[x.name])
|
||||
return sorted(filtered_scripts, key=lambda x: script_scores[x.name])
|
||||
|
||||
def setup_ui(self):
|
||||
inputs = []
|
||||
|
@ -35,7 +35,7 @@ class EmphasisIgnore(Emphasis):
|
||||
|
||||
class EmphasisOriginal(Emphasis):
|
||||
name = "Original"
|
||||
description = "the orginal emphasis implementation"
|
||||
description = "the original emphasis implementation"
|
||||
|
||||
def after_transformers(self):
|
||||
original_mean = self.z.mean()
|
||||
@ -48,7 +48,7 @@ class EmphasisOriginal(Emphasis):
|
||||
|
||||
class EmphasisOriginalNoNorm(EmphasisOriginal):
|
||||
name = "No norm"
|
||||
description = "same as orginal, but without normalization (seems to work better for SDXL)"
|
||||
description = "same as original, but without normalization (seems to work better for SDXL)"
|
||||
|
||||
def after_transformers(self):
|
||||
self.z = self.z * self.multipliers.reshape(self.multipliers.shape + (1,)).expand(self.z.shape)
|
||||
|
@ -23,7 +23,7 @@ class PromptChunk:
|
||||
|
||||
PromptChunkFix = namedtuple('PromptChunkFix', ['offset', 'embedding'])
|
||||
"""An object of this type is a marker showing that textual inversion embedding's vectors have to placed at offset in the prompt
|
||||
chunk. Thos objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
|
||||
chunk. Those objects are found in PromptChunk.fixes and, are placed into FrozenCLIPEmbedderWithCustomWordsBase.hijack.fixes, and finally
|
||||
are applied by sd_hijack.EmbeddingsWithFixes's forward function."""
|
||||
|
||||
|
||||
@ -66,7 +66,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
|
||||
def encode_with_transformers(self, tokens):
|
||||
"""
|
||||
converts a batch of token ids (in python lists) into a single tensor with numeric respresentation of those tokens;
|
||||
converts a batch of token ids (in python lists) into a single tensor with numeric representation of those tokens;
|
||||
All python lists with tokens are assumed to have same length, usually 77.
|
||||
if input is a list with B elements and each element has T tokens, expected output shape is (B, T, C), where C depends on
|
||||
model - can be 768 and 1024.
|
||||
@ -136,7 +136,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
if token == self.comma_token:
|
||||
last_comma = len(chunk.tokens)
|
||||
|
||||
# this is when we are at the end of alloted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
||||
# this is when we are at the end of allotted 75 tokens for the current chunk, and the current token is not a comma. opts.comma_padding_backtrack
|
||||
# is a setting that specifies that if there is a comma nearby, the text after the comma should be moved out of this chunk and into the next.
|
||||
elif opts.comma_padding_backtrack != 0 and len(chunk.tokens) == self.chunk_length and last_comma != -1 and len(chunk.tokens) - last_comma <= opts.comma_padding_backtrack:
|
||||
break_location = last_comma + 1
|
||||
@ -206,7 +206,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
be a multiple of 77; and C is dimensionality of each token - for SD1 it's 768, for SD2 it's 1024, and for SDXL it's 1280.
|
||||
An example shape returned by this function can be: (2, 77, 768).
|
||||
For SDXL, instead of returning one tensor avobe, it returns a tuple with two: the other one with shape (B, 1280) with pooled values.
|
||||
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one elemenet
|
||||
Webui usually sends just one text at a time through this function - the only time when texts is an array with more than one element
|
||||
is when you do prompt editing: "a picture of a [cat:dog:0.4] eating ice cream"
|
||||
"""
|
||||
|
||||
@ -230,7 +230,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
for fixes in self.hijack.fixes:
|
||||
for _position, embedding in fixes:
|
||||
used_embeddings[embedding.name] = embedding
|
||||
|
||||
devices.torch_npu_set_device()
|
||||
z = self.process_tokens(tokens, multipliers)
|
||||
zs.append(z)
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
import collections
|
||||
import os.path
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
|
||||
@ -7,7 +7,6 @@ import torch
|
||||
import re
|
||||
import safetensors.torch
|
||||
from omegaconf import OmegaConf, ListConfig
|
||||
from os import mkdir
|
||||
from urllib import request
|
||||
import ldm.modules.midas as midas
|
||||
|
||||
@ -151,7 +150,7 @@ def list_models():
|
||||
if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
|
||||
model_url = None
|
||||
else:
|
||||
model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
|
||||
model_url = f"{shared.hf_endpoint}/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
|
||||
|
||||
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
|
||||
|
||||
@ -508,7 +507,7 @@ def enable_midas_autodownload():
|
||||
path = midas.api.ISL_PATHS[model_type]
|
||||
if not os.path.exists(path):
|
||||
if not os.path.exists(midas_path):
|
||||
mkdir(midas_path)
|
||||
os.mkdir(midas_path)
|
||||
|
||||
print(f"Downloading midas model weights for {model_type} to {path}")
|
||||
request.urlretrieve(midas_urls[model_type], path)
|
||||
@ -784,9 +783,16 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
|
||||
If it is loaded, returns that (moving it to GPU if necessary, and moving the currently loadded model to CPU if necessary).
|
||||
If not, returns the model that can be used to load weights from checkpoint_info's file.
|
||||
If no such model exists, returns None.
|
||||
Additionaly deletes loaded models that are over the limit set in settings (sd_checkpoints_limit).
|
||||
Additionally deletes loaded models that are over the limit set in settings (sd_checkpoints_limit).
|
||||
"""
|
||||
|
||||
if sd_model is not None and sd_model.sd_checkpoint_info.filename == checkpoint_info.filename:
|
||||
return sd_model
|
||||
|
||||
if shared.opts.sd_checkpoints_keep_in_cpu:
|
||||
send_model_to_cpu(sd_model)
|
||||
timer.record("send model to cpu")
|
||||
|
||||
already_loaded = None
|
||||
for i in reversed(range(len(model_data.loaded_sd_models))):
|
||||
loaded_model = model_data.loaded_sd_models[i]
|
||||
@ -796,14 +802,10 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
|
||||
|
||||
if len(model_data.loaded_sd_models) > shared.opts.sd_checkpoints_limit > 0:
|
||||
print(f"Unloading model {len(model_data.loaded_sd_models)} over the limit of {shared.opts.sd_checkpoints_limit}: {loaded_model.sd_checkpoint_info.title}")
|
||||
model_data.loaded_sd_models.pop()
|
||||
del model_data.loaded_sd_models[i]
|
||||
send_model_to_trash(loaded_model)
|
||||
timer.record("send model to trash")
|
||||
|
||||
if shared.opts.sd_checkpoints_keep_in_cpu:
|
||||
send_model_to_cpu(sd_model)
|
||||
timer.record("send model to cpu")
|
||||
|
||||
if already_loaded is not None:
|
||||
send_model_to_device(already_loaded)
|
||||
timer.record("send model to device")
|
||||
|
@ -13,8 +13,8 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
|
||||
for embedder in self.conditioner.embedders:
|
||||
embedder.ucg_rate = 0.0
|
||||
|
||||
width = getattr(batch, 'width', 1024)
|
||||
height = getattr(batch, 'height', 1024)
|
||||
width = getattr(batch, 'width', 1024) or 1024
|
||||
height = getattr(batch, 'height', 1024) or 1024
|
||||
is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
|
||||
aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
|
||||
|
||||
|
@ -1,7 +1,12 @@
|
||||
from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, sd_samplers_lcm, shared
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
|
||||
from modules import sd_samplers_kdiffusion, sd_samplers_timesteps, sd_samplers_lcm, shared, sd_samplers_common, sd_schedulers
|
||||
|
||||
# imports for functions that previously were here and are used by other modules
|
||||
from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # noqa: F401
|
||||
samples_to_image_grid = sd_samplers_common.samples_to_image_grid
|
||||
sample_to_image = sd_samplers_common.sample_to_image
|
||||
|
||||
all_samplers = [
|
||||
*sd_samplers_kdiffusion.samplers_data_k_diffusion,
|
||||
@ -10,8 +15,8 @@ all_samplers = [
|
||||
]
|
||||
all_samplers_map = {x.name: x for x in all_samplers}
|
||||
|
||||
samplers = []
|
||||
samplers_for_img2img = []
|
||||
samplers: list[sd_samplers_common.SamplerData] = []
|
||||
samplers_for_img2img: list[sd_samplers_common.SamplerData] = []
|
||||
samplers_map = {}
|
||||
samplers_hidden = {}
|
||||
|
||||
@ -57,4 +62,64 @@ def visible_sampler_names():
|
||||
return [x.name for x in samplers if x.name not in samplers_hidden]
|
||||
|
||||
|
||||
def visible_samplers():
|
||||
return [x for x in samplers if x.name not in samplers_hidden]
|
||||
|
||||
|
||||
def get_sampler_from_infotext(d: dict):
|
||||
return get_sampler_and_scheduler(d.get("Sampler"), d.get("Schedule type"))[0]
|
||||
|
||||
|
||||
def get_scheduler_from_infotext(d: dict):
|
||||
return get_sampler_and_scheduler(d.get("Sampler"), d.get("Schedule type"))[1]
|
||||
|
||||
|
||||
def get_hr_sampler_and_scheduler(d: dict):
|
||||
hr_sampler = d.get("Hires sampler", "Use same sampler")
|
||||
sampler = d.get("Sampler") if hr_sampler == "Use same sampler" else hr_sampler
|
||||
|
||||
hr_scheduler = d.get("Hires schedule type", "Use same scheduler")
|
||||
scheduler = d.get("Schedule type") if hr_scheduler == "Use same scheduler" else hr_scheduler
|
||||
|
||||
sampler, scheduler = get_sampler_and_scheduler(sampler, scheduler)
|
||||
|
||||
sampler = sampler if sampler != d.get("Sampler") else "Use same sampler"
|
||||
scheduler = scheduler if scheduler != d.get("Schedule type") else "Use same scheduler"
|
||||
|
||||
return sampler, scheduler
|
||||
|
||||
|
||||
def get_hr_sampler_from_infotext(d: dict):
|
||||
return get_hr_sampler_and_scheduler(d)[0]
|
||||
|
||||
|
||||
def get_hr_scheduler_from_infotext(d: dict):
|
||||
return get_hr_sampler_and_scheduler(d)[1]
|
||||
|
||||
|
||||
@functools.cache
|
||||
def get_sampler_and_scheduler(sampler_name, scheduler_name):
|
||||
default_sampler = samplers[0]
|
||||
found_scheduler = sd_schedulers.schedulers_map.get(scheduler_name, sd_schedulers.schedulers[0])
|
||||
|
||||
name = sampler_name or default_sampler.name
|
||||
|
||||
for scheduler in sd_schedulers.schedulers:
|
||||
name_options = [scheduler.label, scheduler.name, *(scheduler.aliases or [])]
|
||||
|
||||
for name_option in name_options:
|
||||
if name.endswith(" " + name_option):
|
||||
found_scheduler = scheduler
|
||||
name = name[0:-(len(name_option) + 1)]
|
||||
break
|
||||
|
||||
sampler = all_samplers_map.get(name, default_sampler)
|
||||
|
||||
# revert back to Automatic if it's the default scheduler for the selected sampler
|
||||
if sampler.options.get('scheduler', None) == found_scheduler.name:
|
||||
found_scheduler = sd_schedulers.schedulers[0]
|
||||
|
||||
return sampler.name, found_scheduler.label
|
||||
|
||||
|
||||
set_samplers()
|
||||
|
@ -152,7 +152,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
|
||||
if sd_samplers_common.apply_refiner(self):
|
||||
if sd_samplers_common.apply_refiner(self, sigma):
|
||||
cond = self.sampler.sampler_extra_args['cond']
|
||||
uncond = self.sampler.sampler_extra_args['uncond']
|
||||
|
||||
|
@ -155,8 +155,19 @@ def replace_torchsde_browinan():
|
||||
replace_torchsde_browinan()
|
||||
|
||||
|
||||
def apply_refiner(cfg_denoiser):
|
||||
completed_ratio = cfg_denoiser.step / cfg_denoiser.total_steps
|
||||
def apply_refiner(cfg_denoiser, sigma=None):
|
||||
if opts.refiner_switch_by_sample_steps or sigma is None:
|
||||
completed_ratio = cfg_denoiser.step / cfg_denoiser.total_steps
|
||||
cfg_denoiser.p.extra_generation_params["Refiner switch by sampling steps"] = True
|
||||
|
||||
else:
|
||||
# torch.max(sigma) only to handle rare case where we might have different sigmas in the same batch
|
||||
try:
|
||||
timestep = torch.argmin(torch.abs(cfg_denoiser.inner_model.sigmas - torch.max(sigma)))
|
||||
except AttributeError: # for samplers that don't use sigmas (DDIM) sigma is actually the timestep
|
||||
timestep = torch.max(sigma).to(dtype=int)
|
||||
completed_ratio = (999 - timestep) / 1000
|
||||
|
||||
refiner_switch_at = cfg_denoiser.p.refiner_switch_at
|
||||
refiner_checkpoint_info = cfg_denoiser.p.refiner_checkpoint_info
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
import torch
|
||||
import inspect
|
||||
import k_diffusion.sampling
|
||||
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
|
||||
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser, sd_schedulers
|
||||
from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
|
||||
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
|
||||
|
||||
@ -9,32 +9,20 @@ from modules.shared import opts
|
||||
import modules.shared as shared
|
||||
|
||||
samplers_k_diffusion = [
|
||||
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
|
||||
('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}),
|
||||
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
|
||||
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {'scheduler': 'karras'}),
|
||||
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
|
||||
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde'], {'scheduler': 'exponential', "brownian_noise": True}),
|
||||
('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun'], {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}),
|
||||
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
|
||||
('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
|
||||
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
|
||||
('Euler', 'sample_euler', ['k_euler'], {}),
|
||||
('LMS', 'sample_lms', ['k_lms'], {}),
|
||||
('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True, "second_order": True}),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
||||
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
|
||||
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
|
||||
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
|
||||
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
|
||||
('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun'], {"brownian_noise": True, "solver_type": "heun"}),
|
||||
('DPM++ 2M SDE Heun Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun_ka'], {'scheduler': 'karras', "brownian_noise": True, "solver_type": "heun"}),
|
||||
('DPM++ 2M SDE Heun Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun_exp'], {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}),
|
||||
('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'discard_next_to_last_sigma': True, "brownian_noise": True}),
|
||||
('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
|
||||
('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_exp'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
|
||||
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "second_order": True}),
|
||||
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
||||
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
|
||||
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
|
||||
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
|
||||
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
||||
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
|
||||
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
|
||||
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras', "second_order": True}),
|
||||
]
|
||||
|
||||
@ -58,12 +46,7 @@ sampler_extra_params = {
|
||||
}
|
||||
|
||||
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
|
||||
k_diffusion_scheduler = {
|
||||
'Automatic': None,
|
||||
'karras': k_diffusion.sampling.get_sigmas_karras,
|
||||
'exponential': k_diffusion.sampling.get_sigmas_exponential,
|
||||
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
|
||||
}
|
||||
k_diffusion_scheduler = {x.name: x.function for x in sd_schedulers.schedulers}
|
||||
|
||||
|
||||
class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
|
||||
@ -96,42 +79,43 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
|
||||
|
||||
steps += 1 if discard_next_to_last_sigma else 0
|
||||
|
||||
scheduler_name = (p.hr_scheduler if p.is_hr_pass else p.scheduler) or 'Automatic'
|
||||
if scheduler_name == 'Automatic':
|
||||
scheduler_name = self.config.options.get('scheduler', None)
|
||||
|
||||
scheduler = sd_schedulers.schedulers_map.get(scheduler_name)
|
||||
|
||||
m_sigma_min, m_sigma_max = self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item()
|
||||
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
|
||||
|
||||
if p.sampler_noise_scheduler_override:
|
||||
sigmas = p.sampler_noise_scheduler_override(steps)
|
||||
elif opts.k_sched_type != "Automatic":
|
||||
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
||||
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
|
||||
sigmas_kwargs = {
|
||||
'sigma_min': sigma_min,
|
||||
'sigma_max': sigma_max,
|
||||
}
|
||||
elif scheduler is None or scheduler.function is None:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
else:
|
||||
sigmas_kwargs = {'sigma_min': sigma_min, 'sigma_max': sigma_max}
|
||||
|
||||
sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
|
||||
p.extra_generation_params["Schedule type"] = opts.k_sched_type
|
||||
if scheduler.label != 'Automatic' and not p.is_hr_pass:
|
||||
p.extra_generation_params["Schedule type"] = scheduler.label
|
||||
elif scheduler.label != p.extra_generation_params.get("Schedule type"):
|
||||
p.extra_generation_params["Hires schedule type"] = scheduler.label
|
||||
|
||||
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
|
||||
if opts.sigma_min != 0 and opts.sigma_min != m_sigma_min:
|
||||
sigmas_kwargs['sigma_min'] = opts.sigma_min
|
||||
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
|
||||
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
|
||||
|
||||
if opts.sigma_max != 0 and opts.sigma_max != m_sigma_max:
|
||||
sigmas_kwargs['sigma_max'] = opts.sigma_max
|
||||
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
|
||||
|
||||
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
|
||||
|
||||
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
|
||||
if scheduler.default_rho != -1 and opts.rho != 0 and opts.rho != scheduler.default_rho:
|
||||
sigmas_kwargs['rho'] = opts.rho
|
||||
p.extra_generation_params["Schedule rho"] = opts.rho
|
||||
|
||||
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
|
||||
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
||||
if scheduler.need_inner_model:
|
||||
sigmas_kwargs['inner_model'] = self.model_wrap
|
||||
|
||||
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
|
||||
elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential':
|
||||
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
|
||||
sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device)
|
||||
else:
|
||||
sigmas = self.model_wrap.get_sigmas(steps)
|
||||
sigmas = scheduler.function(n=steps, **sigmas_kwargs, device=shared.device)
|
||||
|
||||
if discard_next_to_last_sigma:
|
||||
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
|
||||
|
43
modules/sd_schedulers.py
Normal file
43
modules/sd_schedulers.py
Normal file
@ -0,0 +1,43 @@
|
||||
import dataclasses
|
||||
|
||||
import torch
|
||||
|
||||
import k_diffusion
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Scheduler:
|
||||
name: str
|
||||
label: str
|
||||
function: any
|
||||
|
||||
default_rho: float = -1
|
||||
need_inner_model: bool = False
|
||||
aliases: list = None
|
||||
|
||||
|
||||
def uniform(n, sigma_min, sigma_max, inner_model, device):
|
||||
return inner_model.get_sigmas(n)
|
||||
|
||||
|
||||
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
|
||||
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
||||
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
||||
sigs = [
|
||||
inner_model.t_to_sigma(ts)
|
||||
for ts in torch.linspace(start, end, n + 1)[:-1]
|
||||
]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs).to(device)
|
||||
|
||||
|
||||
schedulers = [
|
||||
Scheduler('automatic', 'Automatic', None),
|
||||
Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
|
||||
Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
|
||||
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
|
||||
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
|
||||
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
|
||||
]
|
||||
|
||||
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}
|
@ -6,6 +6,10 @@ import gradio as gr
|
||||
from modules import shared_cmd_options, shared_gradio_themes, options, shared_items, sd_models_types
|
||||
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
|
||||
from modules import util
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from modules import shared_state, styles, interrogate, shared_total_tqdm, memmon
|
||||
|
||||
cmd_opts = shared_cmd_options.cmd_opts
|
||||
parser = shared_cmd_options.parser
|
||||
@ -16,11 +20,11 @@ styles_filename = cmd_opts.styles_file = cmd_opts.styles_file if len(cmd_opts.st
|
||||
config_filename = cmd_opts.ui_settings_file
|
||||
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
|
||||
|
||||
demo = None
|
||||
demo: gr.Blocks = None
|
||||
|
||||
device = None
|
||||
device: str = None
|
||||
|
||||
weight_load_location = None
|
||||
weight_load_location: str = None
|
||||
|
||||
xformers_available = False
|
||||
|
||||
@ -28,22 +32,22 @@ hypernetworks = {}
|
||||
|
||||
loaded_hypernetworks = []
|
||||
|
||||
state = None
|
||||
state: 'shared_state.State' = None
|
||||
|
||||
prompt_styles = None
|
||||
prompt_styles: 'styles.StyleDatabase' = None
|
||||
|
||||
interrogator = None
|
||||
interrogator: 'interrogate.InterrogateModels' = None
|
||||
|
||||
face_restorers = []
|
||||
|
||||
options_templates = None
|
||||
opts = None
|
||||
restricted_opts = None
|
||||
options_templates: dict = None
|
||||
opts: options.Options = None
|
||||
restricted_opts: set[str] = None
|
||||
|
||||
sd_model: sd_models_types.WebuiSdModel = None
|
||||
|
||||
settings_components = None
|
||||
"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
|
||||
settings_components: dict = None
|
||||
"""assigned from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
|
||||
|
||||
tab_names = []
|
||||
|
||||
@ -65,9 +69,9 @@ progress_print_out = sys.stdout
|
||||
|
||||
gradio_theme = gr.themes.Base()
|
||||
|
||||
total_tqdm = None
|
||||
total_tqdm: 'shared_total_tqdm.TotalTQDM' = None
|
||||
|
||||
mem_mon = None
|
||||
mem_mon: 'memmon.MemUsageMonitor' = None
|
||||
|
||||
options_section = options.options_section
|
||||
OptionInfo = options.OptionInfo
|
||||
@ -86,3 +90,5 @@ list_checkpoint_tiles = shared_items.list_checkpoint_tiles
|
||||
refresh_checkpoints = shared_items.refresh_checkpoints
|
||||
list_samplers = shared_items.list_samplers
|
||||
reload_hypernetworks = shared_items.reload_hypernetworks
|
||||
|
||||
hf_endpoint = os.getenv('HF_ENDPOINT', 'https://huggingface.co')
|
||||
|
@ -1,5 +1,8 @@
|
||||
import html
|
||||
import sys
|
||||
|
||||
from modules import script_callbacks, scripts, ui_components
|
||||
from modules.options import OptionHTML, OptionInfo
|
||||
from modules.shared_cmd_options import cmd_opts
|
||||
|
||||
|
||||
@ -118,6 +121,45 @@ def ui_reorder_categories():
|
||||
yield "scripts"
|
||||
|
||||
|
||||
def callbacks_order_settings():
|
||||
options = {
|
||||
"sd_vae_explanation": OptionHTML("""
|
||||
For categories below, callbacks added to dropdowns happen before others, in order listed.
|
||||
"""),
|
||||
|
||||
}
|
||||
|
||||
callback_options = {}
|
||||
|
||||
for category, _ in script_callbacks.enumerate_callbacks():
|
||||
callback_options[category] = script_callbacks.ordered_callbacks(category, enable_user_sort=False)
|
||||
|
||||
for method_name in scripts.scripts_txt2img.callback_names:
|
||||
callback_options["script_" + method_name] = scripts.scripts_txt2img.create_ordered_callbacks_list(method_name, enable_user_sort=False)
|
||||
|
||||
for method_name in scripts.scripts_img2img.callback_names:
|
||||
callbacks = callback_options.get("script_" + method_name, [])
|
||||
|
||||
for addition in scripts.scripts_img2img.create_ordered_callbacks_list(method_name, enable_user_sort=False):
|
||||
if any(x.name == addition.name for x in callbacks):
|
||||
continue
|
||||
|
||||
callbacks.append(addition)
|
||||
|
||||
callback_options["script_" + method_name] = callbacks
|
||||
|
||||
for category, callbacks in callback_options.items():
|
||||
if not callbacks:
|
||||
continue
|
||||
|
||||
option_info = OptionInfo([], f"{category} callback priority", ui_components.DropdownMulti, {"choices": [x.name for x in callbacks]})
|
||||
option_info.needs_restart()
|
||||
option_info.html("<div class='info'>Default order: <ol>" + "".join(f"<li>{html.escape(x.name)}</li>\n" for x in callbacks) + "</ol></div>")
|
||||
options['prioritized_callbacks_' + category] = option_info
|
||||
|
||||
return options
|
||||
|
||||
|
||||
class Shared(sys.modules[__name__].__class__):
|
||||
"""
|
||||
this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
|
||||
|
@ -19,7 +19,9 @@ restricted_opts = {
|
||||
"outdir_grids",
|
||||
"outdir_txt2img_grids",
|
||||
"outdir_save",
|
||||
"outdir_init_images"
|
||||
"outdir_init_images",
|
||||
"temp_dir",
|
||||
"clean_temp_dir_at_start",
|
||||
}
|
||||
|
||||
categories.register_category("saving", "Saving images")
|
||||
@ -101,6 +103,7 @@ options_templates.update(options_section(('upscaling', "Upscaling", "postprocess
|
||||
"DAT_tile": OptionInfo(192, "Tile size for DAT upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
|
||||
"DAT_tile_overlap": OptionInfo(8, "Tile overlap for DAT upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
|
||||
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}),
|
||||
"set_scale_by_when_changing_upscaler": OptionInfo(False, "Automatically set the Scale by factor based on the name of the selected Upscaler."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('face-restoration', "Face restoration", "postprocessing"), {
|
||||
@ -213,7 +216,7 @@ options_templates.update(options_section(('optimizations', "Optimizations", "sd"
|
||||
"pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
|
||||
"pad_cond_uncond_v0": OptionInfo(False, "Pad prompt/negative prompt (v0)", infotext='Pad conds v0').info("alternative implementation for the above; used prior to 1.6.0 for DDIM sampler; overrides the above if set; WARNING: truncates negative prompt if it's too long; changes seeds"),
|
||||
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
|
||||
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
|
||||
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond commandline argument"),
|
||||
"fp8_storage": OptionInfo("Disable", "FP8 weight", gr.Radio, {"choices": ["Disable", "Enable for SDXL", "Enable"]}).info("Use FP8 to store Linear/Conv layers' weight. Require pytorch>=2.1.0."),
|
||||
"cache_fp16_weight": OptionInfo(False, "Cache FP16 weight for LoRA").info("Cache fp16 weight when enabling FP8, will increase the quality of LoRA. Use more system ram."),
|
||||
}))
|
||||
@ -227,7 +230,8 @@ options_templates.update(options_section(('compatibility', "Compatibility", "sd"
|
||||
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
|
||||
"hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
|
||||
"use_old_scheduling": OptionInfo(False, "Use old prompt editing timelines.", infotext="Old prompt editing timelines").info("For [red:green:N]; old: If N < 1, it's a fraction of steps (and hires fix uses range from 0 to 1), if N >= 1, it's an absolute number of steps; new: If N has a decimal point in it, it's a fraction of steps (and hires fix uses range from 1 to 2), othewrwise it's an absolute number of steps"),
|
||||
"use_downcasted_alpha_bar": OptionInfo(False, "Downcast model alphas_cumprod to fp16 before sampling. For reproducing old seeds.", infotext="Downcast alphas_cumprod")
|
||||
"use_downcasted_alpha_bar": OptionInfo(False, "Downcast model alphas_cumprod to fp16 before sampling. For reproducing old seeds.", infotext="Downcast alphas_cumprod"),
|
||||
"refiner_switch_by_sample_steps": OptionInfo(False, "Switch to refiner by sampling steps instead of model timesteps. Old behavior for refiner.", infotext="Refiner switch by sampling steps")
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('interrogate', "Interrogate"), {
|
||||
@ -257,7 +261,9 @@ options_templates.update(options_section(('extra_networks', "Extra Networks", "s
|
||||
"extra_networks_card_description_is_html": OptionInfo(False, "Treat card description as HTML"),
|
||||
"extra_networks_card_order_field": OptionInfo("Path", "Default order field for Extra Networks cards", gr.Dropdown, {"choices": ['Path', 'Name', 'Date Created', 'Date Modified']}).needs_reload_ui(),
|
||||
"extra_networks_card_order": OptionInfo("Ascending", "Default order for Extra Networks cards", gr.Dropdown, {"choices": ['Ascending', 'Descending']}).needs_reload_ui(),
|
||||
"extra_networks_tree_view_default_enabled": OptionInfo(False, "Enables the Extra Networks directory tree view by default").needs_reload_ui(),
|
||||
"extra_networks_tree_view_style": OptionInfo("Dirs", "Extra Networks directory view style", gr.Radio, {"choices": ["Tree", "Dirs"]}).needs_reload_ui(),
|
||||
"extra_networks_tree_view_default_enabled": OptionInfo(True, "Show the Extra Networks directory view by default").needs_reload_ui(),
|
||||
"extra_networks_tree_view_default_width": OptionInfo(180, "Default width for the Extra Networks directory tree view", gr.Number).needs_reload_ui(),
|
||||
"extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
|
||||
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(),
|
||||
"textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
|
||||
@ -311,6 +317,8 @@ options_templates.update(options_section(('ui', "User interface", "ui"), {
|
||||
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
|
||||
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
|
||||
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
|
||||
"enable_reloading_ui_scripts": OptionInfo(False, "Reload UI scripts when using Reload UI option").info("useful for developing: if you make changes to UI scripts code, it is applied when the UI is reloded."),
|
||||
|
||||
}))
|
||||
|
||||
|
||||
@ -362,13 +370,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
|
||||
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
|
||||
's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
|
||||
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'),
|
||||
'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
|
||||
'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule min sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
|
||||
'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule max sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
|
||||
'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
|
||||
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}, infotext='ENSD').info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
|
||||
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma", infotext='Discard penultimate sigma').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
|
||||
'sgm_noise_multiplier': OptionInfo(False, "SGM noise multiplier", infotext='SGM noise multplier').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12818").info("Match initial noise to official SDXL implementation - only useful for reproducing images"),
|
||||
'sgm_noise_multiplier': OptionInfo(False, "SGM noise multiplier", infotext='SGM noise multiplier').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12818").info("Match initial noise to official SDXL implementation - only useful for reproducing images"),
|
||||
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}, infotext='UniPC variant'),
|
||||
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
|
||||
'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
|
||||
@ -378,6 +385,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
|
||||
|
||||
options_templates.update(options_section(('postprocessing', "Postprocessing", "postprocessing"), {
|
||||
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
||||
'postprocessing_disable_in_extras': OptionInfo([], "Disable postprocessing operations in extras tab", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
||||
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
||||
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
||||
'postprocessing_existing_caption_action': OptionInfo("Ignore", "Action for existing captions", gr.Radio, {"choices": ["Ignore", "Keep", "Prepend", "Append"]}).info("when generating captions using postprocessing; Ignore = use generated; Keep = use original; Prepend/Append = combine both"),
|
||||
|
@ -157,10 +157,12 @@ class State:
|
||||
self.current_image_sampling_step = self.sampling_step
|
||||
|
||||
except Exception:
|
||||
# when switching models during genration, VAE would be on CPU, so creating an image will fail.
|
||||
# when switching models during generation, VAE would be on CPU, so creating an image will fail.
|
||||
# we silently ignore this error
|
||||
errors.record_exception()
|
||||
|
||||
def assign_current_image(self, image):
|
||||
if shared.opts.live_previews_image_format == 'jpeg' and image.mode == 'RGBA':
|
||||
image = image.convert('RGB')
|
||||
self.current_image = image
|
||||
self.id_live_preview += 1
|
||||
|
@ -1,3 +1,4 @@
|
||||
from __future__ import annotations
|
||||
from pathlib import Path
|
||||
from modules import errors
|
||||
import csv
|
||||
@ -42,7 +43,7 @@ def extract_style_text_from_prompt(style_text, prompt):
|
||||
stripped_style_text = style_text.strip()
|
||||
|
||||
if "{prompt}" in stripped_style_text:
|
||||
left, right = stripped_style_text.split("{prompt}", 2)
|
||||
left, _, right = stripped_style_text.partition("{prompt}")
|
||||
if stripped_prompt.startswith(left) and stripped_prompt.endswith(right):
|
||||
prompt = stripped_prompt[len(left):len(stripped_prompt)-len(right)]
|
||||
return True, prompt
|
||||
|
@ -65,7 +65,7 @@ def crop_image(im, settings):
|
||||
rect[3] -= 1
|
||||
d.rectangle(rect, outline=GREEN)
|
||||
results.append(im_debug)
|
||||
if settings.destop_view_image:
|
||||
if settings.desktop_view_image:
|
||||
im_debug.show()
|
||||
|
||||
return results
|
||||
@ -341,5 +341,5 @@ class Settings:
|
||||
self.entropy_points_weight = entropy_points_weight
|
||||
self.face_points_weight = face_points_weight
|
||||
self.annotate_image = annotate_image
|
||||
self.destop_view_image = False
|
||||
self.desktop_view_image = False
|
||||
self.dnn_model_path = dnn_model_path
|
||||
|
@ -2,7 +2,6 @@ import os
|
||||
import numpy as np
|
||||
import PIL
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset, DataLoader, Sampler
|
||||
from torchvision import transforms
|
||||
from collections import defaultdict
|
||||
@ -10,7 +9,7 @@ from random import shuffle, choices
|
||||
|
||||
import random
|
||||
import tqdm
|
||||
from modules import devices, shared
|
||||
from modules import devices, shared, images
|
||||
import re
|
||||
|
||||
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
||||
@ -61,7 +60,7 @@ class PersonalizedBase(Dataset):
|
||||
if shared.state.interrupted:
|
||||
raise Exception("interrupted")
|
||||
try:
|
||||
image = Image.open(path)
|
||||
image = images.read(path)
|
||||
#Currently does not work for single color transparency
|
||||
#We would need to read image.info['transparency'] for that
|
||||
if use_weight and 'A' in image.getbands():
|
||||
|
@ -1,12 +1,16 @@
|
||||
import base64
|
||||
import json
|
||||
import os.path
|
||||
import warnings
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import zlib
|
||||
from PIL import Image, ImageDraw
|
||||
import torch
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class EmbeddingEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
@ -43,7 +47,7 @@ def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
|
||||
|
||||
def xor_block(block):
|
||||
g = lcg()
|
||||
randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
|
||||
randblock = np.array([next(g) for _ in range(np.prod(block.shape))]).astype(np.uint8).reshape(block.shape)
|
||||
return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
|
||||
|
||||
|
||||
@ -114,7 +118,7 @@ def extract_image_data_embed(image):
|
||||
outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
|
||||
black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
|
||||
if black_cols[0].shape[0] < 2:
|
||||
print('No Image data blocks found.')
|
||||
logger.debug(f'{os.path.basename(getattr(image, "filename", "unknown image file"))}: no embedded information found.')
|
||||
return None
|
||||
|
||||
data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
|
||||
@ -193,11 +197,11 @@ if __name__ == '__main__':
|
||||
|
||||
embedded_image = insert_image_data_embed(cap_image, test_embed)
|
||||
|
||||
retrived_embed = extract_image_data_embed(embedded_image)
|
||||
retrieved_embed = extract_image_data_embed(embedded_image)
|
||||
|
||||
assert str(retrived_embed) == str(test_embed)
|
||||
assert str(retrieved_embed) == str(test_embed)
|
||||
|
||||
embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)
|
||||
embedded_image2 = insert_image_data_embed(cap_image, retrieved_embed)
|
||||
|
||||
assert embedded_image == embedded_image2
|
||||
|
||||
|
@ -17,7 +17,7 @@ import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
|
||||
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay
|
||||
from modules.textual_inversion.logging import save_settings_to_file
|
||||
from modules.textual_inversion.saving_settings import save_settings_to_file
|
||||
|
||||
|
||||
TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"])
|
||||
@ -172,7 +172,7 @@ class EmbeddingDatabase:
|
||||
if data:
|
||||
name = data.get('name', name)
|
||||
else:
|
||||
# if data is None, means this is not an embeding, just a preview image
|
||||
# if data is None, means this is not an embedding, just a preview image
|
||||
return
|
||||
elif ext in ['.BIN', '.PT']:
|
||||
data = torch.load(path, map_location="cpu")
|
||||
|
@ -11,7 +11,7 @@ from PIL import Image
|
||||
import gradio as gr
|
||||
|
||||
|
||||
def txt2img_create_processing(id_task: str, request: gr.Request, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_name: str, n_iter: int, batch_size: int, cfg_scale: float, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args, force_enable_hr=False):
|
||||
def txt2img_create_processing(id_task: str, request: gr.Request, prompt: str, negative_prompt: str, prompt_styles, n_iter: int, batch_size: int, cfg_scale: float, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_scheduler: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args, force_enable_hr=False):
|
||||
override_settings = create_override_settings_dict(override_settings_texts)
|
||||
|
||||
if force_enable_hr:
|
||||
@ -24,10 +24,8 @@ def txt2img_create_processing(id_task: str, request: gr.Request, prompt: str, ne
|
||||
prompt=prompt,
|
||||
styles=prompt_styles,
|
||||
negative_prompt=negative_prompt,
|
||||
sampler_name=sampler_name,
|
||||
batch_size=batch_size,
|
||||
n_iter=n_iter,
|
||||
steps=steps,
|
||||
cfg_scale=cfg_scale,
|
||||
width=width,
|
||||
height=height,
|
||||
@ -40,6 +38,7 @@ def txt2img_create_processing(id_task: str, request: gr.Request, prompt: str, ne
|
||||
hr_resize_y=hr_resize_y,
|
||||
hr_checkpoint_name=None if hr_checkpoint_name == 'Use same checkpoint' else hr_checkpoint_name,
|
||||
hr_sampler_name=None if hr_sampler_name == 'Use same sampler' else hr_sampler_name,
|
||||
hr_scheduler=None if hr_scheduler == 'Use same scheduler' else hr_scheduler,
|
||||
hr_prompt=hr_prompt,
|
||||
hr_negative_prompt=hr_negative_prompt,
|
||||
override_settings=override_settings,
|
||||
|
@ -12,7 +12,7 @@ import numpy as np
|
||||
from PIL import Image, PngImagePlugin # noqa: F401
|
||||
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
|
||||
|
||||
from modules import gradio_extensons # noqa: F401
|
||||
from modules import gradio_extensons, sd_schedulers # noqa: F401
|
||||
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, scripts, sd_samplers, processing, ui_extra_networks, ui_toprow, launch_utils
|
||||
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML, InputAccordion, ResizeHandleRow
|
||||
from modules.paths import script_path
|
||||
@ -229,19 +229,6 @@ def create_output_panel(tabname, outdir, toprow=None):
|
||||
return ui_common.create_output_panel(tabname, outdir, toprow)
|
||||
|
||||
|
||||
def create_sampler_and_steps_selection(choices, tabname):
|
||||
if opts.samplers_in_dropdown:
|
||||
with FormRow(elem_id=f"sampler_selection_{tabname}"):
|
||||
sampler_name = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=choices, value=choices[0])
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20)
|
||||
else:
|
||||
with FormGroup(elem_id=f"sampler_selection_{tabname}"):
|
||||
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20)
|
||||
sampler_name = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=choices, value=choices[0])
|
||||
|
||||
return steps, sampler_name
|
||||
|
||||
|
||||
def ordered_ui_categories():
|
||||
user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder_list)}
|
||||
|
||||
@ -269,6 +256,9 @@ def create_ui():
|
||||
|
||||
parameters_copypaste.reset()
|
||||
|
||||
settings = ui_settings.UiSettings()
|
||||
settings.register_settings()
|
||||
|
||||
scripts.scripts_current = scripts.scripts_txt2img
|
||||
scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
|
||||
|
||||
@ -292,9 +282,6 @@ def create_ui():
|
||||
if category == "prompt":
|
||||
toprow.create_inline_toprow_prompts()
|
||||
|
||||
if category == "sampler":
|
||||
steps, sampler_name = create_sampler_and_steps_selection(sd_samplers.visible_sampler_names(), "txt2img")
|
||||
|
||||
elif category == "dimensions":
|
||||
with FormRow():
|
||||
with gr.Column(elem_id="txt2img_column_size", scale=4):
|
||||
@ -335,10 +322,11 @@ def create_ui():
|
||||
|
||||
with FormRow(elem_id="txt2img_hires_fix_row3", variant="compact", visible=opts.hires_fix_show_sampler) as hr_sampler_container:
|
||||
|
||||
hr_checkpoint_name = gr.Dropdown(label='Hires checkpoint', elem_id="hr_checkpoint", choices=["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True), value="Use same checkpoint")
|
||||
hr_checkpoint_name = gr.Dropdown(label='Checkpoint', elem_id="hr_checkpoint", choices=["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True), value="Use same checkpoint")
|
||||
create_refresh_button(hr_checkpoint_name, modules.sd_models.list_models, lambda: {"choices": ["Use same checkpoint"] + modules.sd_models.checkpoint_tiles(use_short=True)}, "hr_checkpoint_refresh")
|
||||
|
||||
hr_sampler_name = gr.Dropdown(label='Hires sampling method', elem_id="hr_sampler", choices=["Use same sampler"] + sd_samplers.visible_sampler_names(), value="Use same sampler")
|
||||
hr_scheduler = gr.Dropdown(label='Hires schedule type', elem_id="hr_scheduler", choices=["Use same scheduler"] + [x.label for x in sd_schedulers.schedulers], value="Use same scheduler")
|
||||
|
||||
with FormRow(elem_id="txt2img_hires_fix_row4", variant="compact", visible=opts.hires_fix_show_prompts) as hr_prompts_container:
|
||||
with gr.Column(scale=80):
|
||||
@ -393,8 +381,6 @@ def create_ui():
|
||||
toprow.prompt,
|
||||
toprow.negative_prompt,
|
||||
toprow.ui_styles.dropdown,
|
||||
steps,
|
||||
sampler_name,
|
||||
batch_count,
|
||||
batch_size,
|
||||
cfg_scale,
|
||||
@ -409,6 +395,7 @@ def create_ui():
|
||||
hr_resize_y,
|
||||
hr_checkpoint_name,
|
||||
hr_sampler_name,
|
||||
hr_scheduler,
|
||||
hr_prompt,
|
||||
hr_negative_prompt,
|
||||
override_settings,
|
||||
@ -458,8 +445,6 @@ def create_ui():
|
||||
txt2img_paste_fields = [
|
||||
PasteField(toprow.prompt, "Prompt", api="prompt"),
|
||||
PasteField(toprow.negative_prompt, "Negative prompt", api="negative_prompt"),
|
||||
PasteField(steps, "Steps", api="steps"),
|
||||
PasteField(sampler_name, "Sampler", api="sampler_name"),
|
||||
PasteField(cfg_scale, "CFG scale", api="cfg_scale"),
|
||||
PasteField(width, "Size-1", api="width"),
|
||||
PasteField(height, "Size-2", api="height"),
|
||||
@ -473,8 +458,9 @@ def create_ui():
|
||||
PasteField(hr_resize_x, "Hires resize-1", api="hr_resize_x"),
|
||||
PasteField(hr_resize_y, "Hires resize-2", api="hr_resize_y"),
|
||||
PasteField(hr_checkpoint_name, "Hires checkpoint", api="hr_checkpoint_name"),
|
||||
PasteField(hr_sampler_name, "Hires sampler", api="hr_sampler_name"),
|
||||
PasteField(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" else gr.update()),
|
||||
PasteField(hr_sampler_name, sd_samplers.get_hr_sampler_from_infotext, api="hr_sampler_name"),
|
||||
PasteField(hr_scheduler, sd_samplers.get_hr_scheduler_from_infotext, api="hr_scheduler"),
|
||||
PasteField(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" or d.get("Hires checkpoint", "Use same checkpoint") != "Use same checkpoint" or d.get("Hires schedule type", "Use same scheduler") != "Use same scheduler" else gr.update()),
|
||||
PasteField(hr_prompt, "Hires prompt", api="hr_prompt"),
|
||||
PasteField(hr_negative_prompt, "Hires negative prompt", api="hr_negative_prompt"),
|
||||
PasteField(hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
|
||||
@ -485,11 +471,13 @@ def create_ui():
|
||||
paste_button=toprow.paste, tabname="txt2img", source_text_component=toprow.prompt, source_image_component=None,
|
||||
))
|
||||
|
||||
steps = scripts.scripts_txt2img.script('Sampler').steps
|
||||
|
||||
txt2img_preview_params = [
|
||||
toprow.prompt,
|
||||
toprow.negative_prompt,
|
||||
steps,
|
||||
sampler_name,
|
||||
scripts.scripts_txt2img.script('Sampler').sampler_name,
|
||||
cfg_scale,
|
||||
scripts.scripts_txt2img.script('Seed').seed,
|
||||
width,
|
||||
@ -620,9 +608,6 @@ def create_ui():
|
||||
with FormRow():
|
||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
|
||||
|
||||
if category == "sampler":
|
||||
steps, sampler_name = create_sampler_and_steps_selection(sd_samplers.visible_sampler_names(), "img2img")
|
||||
|
||||
elif category == "dimensions":
|
||||
with FormRow():
|
||||
with gr.Column(elem_id="img2img_column_size", scale=4):
|
||||
@ -751,8 +736,6 @@ def create_ui():
|
||||
inpaint_color_sketch_orig,
|
||||
init_img_inpaint,
|
||||
init_mask_inpaint,
|
||||
steps,
|
||||
sampler_name,
|
||||
mask_blur,
|
||||
mask_alpha,
|
||||
inpainting_fill,
|
||||
@ -837,6 +820,8 @@ def create_ui():
|
||||
**interrogate_args,
|
||||
)
|
||||
|
||||
steps = scripts.scripts_img2img.script('Sampler').steps
|
||||
|
||||
toprow.ui_styles.dropdown.change(fn=wrap_queued_call(update_token_counter), inputs=[toprow.prompt, steps, toprow.ui_styles.dropdown], outputs=[toprow.token_counter])
|
||||
toprow.ui_styles.dropdown.change(fn=wrap_queued_call(update_negative_prompt_token_counter), inputs=[toprow.negative_prompt, steps, toprow.ui_styles.dropdown], outputs=[toprow.negative_token_counter])
|
||||
toprow.token_button.click(fn=update_token_counter, inputs=[toprow.prompt, steps, toprow.ui_styles.dropdown], outputs=[toprow.token_counter])
|
||||
@ -845,8 +830,6 @@ def create_ui():
|
||||
img2img_paste_fields = [
|
||||
(toprow.prompt, "Prompt"),
|
||||
(toprow.negative_prompt, "Negative prompt"),
|
||||
(steps, "Steps"),
|
||||
(sampler_name, "Sampler"),
|
||||
(cfg_scale, "CFG scale"),
|
||||
(image_cfg_scale, "Image CFG scale"),
|
||||
(width, "Size-1"),
|
||||
@ -1116,7 +1099,6 @@ def create_ui():
|
||||
loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file)
|
||||
ui_settings_from_file = loadsave.ui_settings.copy()
|
||||
|
||||
settings = ui_settings.UiSettings()
|
||||
settings.create_ui(loadsave, dummy_component)
|
||||
|
||||
interfaces = [
|
||||
|
@ -3,13 +3,10 @@ import dataclasses
|
||||
import json
|
||||
import html
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
|
||||
import gradio as gr
|
||||
import subprocess as sp
|
||||
|
||||
from modules import call_queue, shared, ui_tempdir
|
||||
from modules import call_queue, shared, ui_tempdir, util
|
||||
from modules.infotext_utils import image_from_url_text
|
||||
import modules.images
|
||||
from modules.ui_components import ToolButton
|
||||
@ -105,7 +102,7 @@ def save_files(js_data, images, do_make_zip, index):
|
||||
logfile_path = os.path.join(shared.opts.outdir_save, "log.csv")
|
||||
|
||||
# NOTE: ensure csv integrity when fields are added by
|
||||
# updating headers and padding with delimeters where needed
|
||||
# updating headers and padding with delimiters where needed
|
||||
if os.path.exists(logfile_path):
|
||||
update_logfile(logfile_path, fields)
|
||||
|
||||
@ -176,31 +173,7 @@ def create_output_panel(tabname, outdir, toprow=None):
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if not os.path.exists(f):
|
||||
msg = f'Folder "{f}" does not exist. After you create an image, the folder will be created.'
|
||||
print(msg)
|
||||
gr.Info(msg)
|
||||
return
|
||||
elif not os.path.isdir(f):
|
||||
msg = f"""
|
||||
WARNING
|
||||
An open_folder request was made with an argument that is not a folder.
|
||||
This could be an error or a malicious attempt to run code on your computer.
|
||||
Requested path was: {f}
|
||||
"""
|
||||
print(msg, file=sys.stderr)
|
||||
gr.Warning(msg)
|
||||
return
|
||||
|
||||
path = os.path.normpath(f)
|
||||
if platform.system() == "Windows":
|
||||
os.startfile(path)
|
||||
elif platform.system() == "Darwin":
|
||||
sp.Popen(["open", path])
|
||||
elif "microsoft-standard-WSL2" in platform.uname().release:
|
||||
sp.Popen(["wsl-open", path])
|
||||
else:
|
||||
sp.Popen(["xdg-open", path])
|
||||
util.open_folder(f)
|
||||
|
||||
with gr.Column(elem_id=f"{tabname}_results"):
|
||||
if toprow:
|
||||
|
@ -88,7 +88,7 @@ class DropdownEditable(FormComponent, gr.Dropdown):
|
||||
class InputAccordion(gr.Checkbox):
|
||||
"""A gr.Accordion that can be used as an input - returns True if open, False if closed.
|
||||
|
||||
Actaully just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
|
||||
Actually just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
|
||||
"""
|
||||
|
||||
global_index = 0
|
||||
|
@ -58,8 +58,9 @@ def apply_and_restart(disable_list, update_list, disable_all):
|
||||
|
||||
def save_config_state(name):
|
||||
current_config_state = config_states.get_config()
|
||||
if not name:
|
||||
name = "Config"
|
||||
|
||||
name = os.path.basename(name or "Config")
|
||||
|
||||
current_config_state["name"] = name
|
||||
timestamp = datetime.now().strftime('%Y_%m_%d-%H_%M_%S')
|
||||
filename = os.path.join(config_states_dir, f"{timestamp}_{name}.json")
|
||||
@ -380,7 +381,7 @@ def install_extension_from_url(dirname, url, branch_name=None):
|
||||
except OSError as err:
|
||||
if err.errno == errno.EXDEV:
|
||||
# Cross device link, typical in docker or when tmp/ and extensions/ are on different file systems
|
||||
# Since we can't use a rename, do the slower but more versitile shutil.move()
|
||||
# Since we can't use a rename, do the slower but more versatile shutil.move()
|
||||
shutil.move(tmpdir, target_dir)
|
||||
else:
|
||||
# Something else, not enough free space, permissions, etc. rethrow it so that it gets handled.
|
||||
|
@ -1,6 +1,8 @@
|
||||
import functools
|
||||
import os.path
|
||||
import urllib.parse
|
||||
from base64 import b64decode
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from dataclasses import dataclass
|
||||
@ -11,6 +13,7 @@ import gradio as gr
|
||||
import json
|
||||
import html
|
||||
from fastapi.exceptions import HTTPException
|
||||
from PIL import Image
|
||||
|
||||
from modules.infotext_utils import image_from_url_text
|
||||
|
||||
@ -108,6 +111,31 @@ def fetch_file(filename: str = ""):
|
||||
return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
|
||||
|
||||
|
||||
def fetch_cover_images(page: str = "", item: str = "", index: int = 0):
|
||||
from starlette.responses import Response
|
||||
|
||||
page = next(iter([x for x in extra_pages if x.name == page]), None)
|
||||
if page is None:
|
||||
raise HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
metadata = page.metadata.get(item)
|
||||
if metadata is None:
|
||||
raise HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
cover_images = json.loads(metadata.get('ssmd_cover_images', {}))
|
||||
image = cover_images[index] if index < len(cover_images) else None
|
||||
if not image:
|
||||
raise HTTPException(status_code=404, detail="File not found")
|
||||
|
||||
try:
|
||||
image = Image.open(BytesIO(b64decode(image)))
|
||||
buffer = BytesIO()
|
||||
image.save(buffer, format=image.format)
|
||||
return Response(content=buffer.getvalue(), media_type=image.get_format_mimetype())
|
||||
except Exception as err:
|
||||
raise ValueError(f"File cannot be fetched: {item}. Failed to load cover image.") from err
|
||||
|
||||
|
||||
def get_metadata(page: str = "", item: str = ""):
|
||||
from starlette.responses import JSONResponse
|
||||
|
||||
@ -119,6 +147,8 @@ def get_metadata(page: str = "", item: str = ""):
|
||||
if metadata is None:
|
||||
return JSONResponse({})
|
||||
|
||||
metadata = {i:metadata[i] for i in metadata if i != 'ssmd_cover_images'} # those are cover images, and they are too big to display in UI as text
|
||||
|
||||
return JSONResponse({"metadata": json.dumps(metadata, indent=4, ensure_ascii=False)})
|
||||
|
||||
|
||||
@ -142,6 +172,7 @@ def get_single_card(page: str = "", tabname: str = "", name: str = ""):
|
||||
|
||||
def add_pages_to_demo(app):
|
||||
app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"])
|
||||
app.add_api_route("/sd_extra_networks/cover-images", fetch_cover_images, methods=["GET"])
|
||||
app.add_api_route("/sd_extra_networks/metadata", get_metadata, methods=["GET"])
|
||||
app.add_api_route("/sd_extra_networks/get-single-card", get_single_card, methods=["GET"])
|
||||
|
||||
@ -151,6 +182,7 @@ def quote_js(s):
|
||||
s = s.replace('"', '\\"')
|
||||
return f'"{s}"'
|
||||
|
||||
|
||||
class ExtraNetworksPage:
|
||||
def __init__(self, title):
|
||||
self.title = title
|
||||
@ -164,6 +196,8 @@ class ExtraNetworksPage:
|
||||
self.lister = util.MassFileLister()
|
||||
# HTML Templates
|
||||
self.pane_tpl = shared.html("extra-networks-pane.html")
|
||||
self.pane_content_tree_tpl = shared.html("extra-networks-pane-tree.html")
|
||||
self.pane_content_dirs_tpl = shared.html("extra-networks-pane-dirs.html")
|
||||
self.card_tpl = shared.html("extra-networks-card.html")
|
||||
self.btn_tree_tpl = shared.html("extra-networks-tree-button.html")
|
||||
self.btn_copy_path_tpl = shared.html("extra-networks-copy-path-button.html")
|
||||
@ -243,14 +277,12 @@ class ExtraNetworksPage:
|
||||
btn_metadata = self.btn_metadata_tpl.format(
|
||||
**{
|
||||
"extra_networks_tabname": self.extra_networks_tabname,
|
||||
"name": html.escape(item["name"]),
|
||||
}
|
||||
)
|
||||
btn_edit_item = self.btn_edit_item_tpl.format(
|
||||
**{
|
||||
"tabname": tabname,
|
||||
"extra_networks_tabname": self.extra_networks_tabname,
|
||||
"name": html.escape(item["name"]),
|
||||
}
|
||||
)
|
||||
|
||||
@ -476,6 +508,47 @@ class ExtraNetworksPage:
|
||||
|
||||
return f"<ul class='tree-list tree-list--tree'>{res}</ul>"
|
||||
|
||||
def create_dirs_view_html(self, tabname: str) -> str:
|
||||
"""Generates HTML for displaying folders."""
|
||||
|
||||
subdirs = {}
|
||||
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
|
||||
for root, dirs, _ in sorted(os.walk(parentdir, followlinks=True), key=lambda x: shared.natural_sort_key(x[0])):
|
||||
for dirname in sorted(dirs, key=shared.natural_sort_key):
|
||||
x = os.path.join(root, dirname)
|
||||
|
||||
if not os.path.isdir(x):
|
||||
continue
|
||||
|
||||
subdir = os.path.abspath(x)[len(parentdir):]
|
||||
|
||||
if shared.opts.extra_networks_dir_button_function:
|
||||
if not subdir.startswith(os.path.sep):
|
||||
subdir = os.path.sep + subdir
|
||||
else:
|
||||
while subdir.startswith(os.path.sep):
|
||||
subdir = subdir[1:]
|
||||
|
||||
is_empty = len(os.listdir(x)) == 0
|
||||
if not is_empty and not subdir.endswith(os.path.sep):
|
||||
subdir = subdir + os.path.sep
|
||||
|
||||
if (os.path.sep + "." in subdir or subdir.startswith(".")) and not shared.opts.extra_networks_show_hidden_directories:
|
||||
continue
|
||||
|
||||
subdirs[subdir] = 1
|
||||
|
||||
if subdirs:
|
||||
subdirs = {"": 1, **subdirs}
|
||||
|
||||
subdirs_html = "".join([f"""
|
||||
<button class='lg secondary gradio-button custom-button{" search-all" if subdir == "" else ""}' onclick='extraNetworksSearchButton("{tabname}", "{self.extra_networks_tabname}", event)'>
|
||||
{html.escape(subdir if subdir != "" else "all")}
|
||||
</button>
|
||||
""" for subdir in subdirs])
|
||||
|
||||
return subdirs_html
|
||||
|
||||
def create_card_view_html(self, tabname: str, *, none_message) -> str:
|
||||
"""Generates HTML for the network Card View section for a tab.
|
||||
|
||||
@ -489,15 +562,15 @@ class ExtraNetworksPage:
|
||||
Returns:
|
||||
HTML formatted string.
|
||||
"""
|
||||
res = ""
|
||||
res = []
|
||||
for item in self.items.values():
|
||||
res += self.create_item_html(tabname, item, self.card_tpl)
|
||||
res.append(self.create_item_html(tabname, item, self.card_tpl))
|
||||
|
||||
if res == "":
|
||||
if not res:
|
||||
dirs = "".join([f"<li>{x}</li>" for x in self.allowed_directories_for_previews()])
|
||||
res = none_message or shared.html("extra-networks-no-cards.html").format(dirs=dirs)
|
||||
res = [none_message or shared.html("extra-networks-no-cards.html").format(dirs=dirs)]
|
||||
|
||||
return res
|
||||
return "".join(res)
|
||||
|
||||
def create_html(self, tabname, *, empty=False):
|
||||
"""Generates an HTML string for the current pane.
|
||||
@ -526,28 +599,28 @@ class ExtraNetworksPage:
|
||||
if "user_metadata" not in item:
|
||||
self.read_user_metadata(item)
|
||||
|
||||
data_sortdir = shared.opts.extra_networks_card_order
|
||||
data_sortmode = shared.opts.extra_networks_card_order_field.lower().replace("sort", "").replace(" ", "_").rstrip("_").strip()
|
||||
data_sortkey = f"{data_sortmode}-{data_sortdir}-{len(self.items)}"
|
||||
tree_view_btn_extra_class = ""
|
||||
tree_view_div_extra_class = "hidden"
|
||||
if shared.opts.extra_networks_tree_view_default_enabled:
|
||||
tree_view_btn_extra_class = "extra-network-control--enabled"
|
||||
tree_view_div_extra_class = ""
|
||||
show_tree = shared.opts.extra_networks_tree_view_default_enabled
|
||||
|
||||
return self.pane_tpl.format(
|
||||
**{
|
||||
"tabname": tabname,
|
||||
"extra_networks_tabname": self.extra_networks_tabname,
|
||||
"data_sortmode": data_sortmode,
|
||||
"data_sortkey": data_sortkey,
|
||||
"data_sortdir": data_sortdir,
|
||||
"tree_view_btn_extra_class": tree_view_btn_extra_class,
|
||||
"tree_view_div_extra_class": tree_view_div_extra_class,
|
||||
"tree_html": self.create_tree_view_html(tabname),
|
||||
"items_html": self.create_card_view_html(tabname, none_message="Loading..." if empty else None),
|
||||
}
|
||||
)
|
||||
page_params = {
|
||||
"tabname": tabname,
|
||||
"extra_networks_tabname": self.extra_networks_tabname,
|
||||
"data_sortdir": shared.opts.extra_networks_card_order,
|
||||
"sort_path_active": ' extra-network-control--enabled' if shared.opts.extra_networks_card_order_field == 'Path' else '',
|
||||
"sort_name_active": ' extra-network-control--enabled' if shared.opts.extra_networks_card_order_field == 'Name' else '',
|
||||
"sort_date_created_active": ' extra-network-control--enabled' if shared.opts.extra_networks_card_order_field == 'Date Created' else '',
|
||||
"sort_date_modified_active": ' extra-network-control--enabled' if shared.opts.extra_networks_card_order_field == 'Date Modified' else '',
|
||||
"tree_view_btn_extra_class": "extra-network-control--enabled" if show_tree else "",
|
||||
"items_html": self.create_card_view_html(tabname, none_message="Loading..." if empty else None),
|
||||
"extra_networks_tree_view_default_width": shared.opts.extra_networks_tree_view_default_width,
|
||||
"tree_view_div_default_display_class": "" if show_tree else "extra-network-dirs-hidden",
|
||||
}
|
||||
|
||||
if shared.opts.extra_networks_tree_view_style == "Tree":
|
||||
pane_content = self.pane_content_tree_tpl.format(**page_params, tree_html=self.create_tree_view_html(tabname))
|
||||
else:
|
||||
pane_content = self.pane_content_dirs_tpl.format(**page_params, dirs_html=self.create_dirs_view_html(tabname))
|
||||
|
||||
return self.pane_tpl.format(**page_params, pane_content=pane_content)
|
||||
|
||||
def create_item(self, name, index=None):
|
||||
raise NotImplementedError()
|
||||
@ -584,6 +657,17 @@ class ExtraNetworksPage:
|
||||
|
||||
return None
|
||||
|
||||
def find_embedded_preview(self, path, name, metadata):
|
||||
"""
|
||||
Find if embedded preview exists in safetensors metadata and return endpoint for it.
|
||||
"""
|
||||
|
||||
file = f"{path}.safetensors"
|
||||
if self.lister.exists(file) and 'ssmd_cover_images' in metadata and len(list(filter(None, json.loads(metadata['ssmd_cover_images'])))) > 0:
|
||||
return f"./sd_extra_networks/cover-images?page={self.extra_networks_tabname}&item={name}"
|
||||
|
||||
return None
|
||||
|
||||
def find_description(self, path):
|
||||
"""
|
||||
Find and read a description file for a given path (without extension).
|
||||
@ -693,7 +777,7 @@ def create_ui(interface: gr.Blocks, unrelated_tabs, tabname):
|
||||
return ui.pages_contents
|
||||
|
||||
button_refresh = gr.Button("Refresh", elem_id=f"{tabname}_{page.extra_networks_tabname}_extra_refresh_internal", visible=False)
|
||||
button_refresh.click(fn=refresh, inputs=[], outputs=ui.pages).then(fn=lambda: None, _js="function(){ " + f"applyExtraNetworkFilter('{tabname}_{page.extra_networks_tabname}');" + " }")
|
||||
button_refresh.click(fn=refresh, inputs=[], outputs=ui.pages).then(fn=lambda: None, _js="function(){ " + f"applyExtraNetworkFilter('{tabname}_{page.extra_networks_tabname}');" + " }").then(fn=lambda: None, _js='setupAllResizeHandles')
|
||||
|
||||
def create_html():
|
||||
ui.pages_contents = [pg.create_html(ui.tabname) for pg in ui.stored_extra_pages]
|
||||
@ -703,7 +787,7 @@ def create_ui(interface: gr.Blocks, unrelated_tabs, tabname):
|
||||
create_html()
|
||||
return ui.pages_contents
|
||||
|
||||
interface.load(fn=pages_html, inputs=[], outputs=ui.pages)
|
||||
interface.load(fn=pages_html, inputs=[], outputs=ui.pages).then(fn=lambda: None, _js='setupAllResizeHandles')
|
||||
|
||||
return ui
|
||||
|
||||
|
@ -133,8 +133,10 @@ class UserMetadataEditor:
|
||||
filename = item.get("filename", None)
|
||||
basename, ext = os.path.splitext(filename)
|
||||
|
||||
with open(basename + '.json', "w", encoding="utf8") as file:
|
||||
metadata_path = basename + '.json'
|
||||
with open(metadata_path, "w", encoding="utf8") as file:
|
||||
json.dump(metadata, file, indent=4, ensure_ascii=False)
|
||||
self.page.lister.update_file_entry(metadata_path)
|
||||
|
||||
def save_user_metadata(self, name, desc, notes):
|
||||
user_metadata = self.get_user_metadata(name)
|
||||
@ -185,7 +187,8 @@ class UserMetadataEditor:
|
||||
geninfo, items = images.read_info_from_image(image)
|
||||
|
||||
images.save_image_with_geninfo(image, geninfo, item["local_preview"])
|
||||
|
||||
self.page.lister.update_file_entry(item["local_preview"])
|
||||
item['preview'] = self.page.find_preview(item["local_preview"])
|
||||
return self.get_card_html(name), ''
|
||||
|
||||
def setup_ui(self, gallery):
|
||||
@ -200,6 +203,3 @@ class UserMetadataEditor:
|
||||
inputs=[self.edit_name_input],
|
||||
outputs=[]
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
@ -104,6 +104,8 @@ class UiLoadsave:
|
||||
apply_field(x, 'value', check_dropdown, getattr(x, 'init_field', None))
|
||||
|
||||
if type(x) == InputAccordion:
|
||||
if hasattr(x, 'custom_script_source'):
|
||||
x.accordion.custom_script_source = x.custom_script_source
|
||||
if x.accordion.visible:
|
||||
apply_field(x.accordion, 'visible')
|
||||
apply_field(x, 'value')
|
||||
|
@ -12,7 +12,7 @@ def create_ui():
|
||||
with gr.Column(variant='compact'):
|
||||
with gr.Tabs(elem_id="mode_extras"):
|
||||
with gr.TabItem('Single Image', id="single_image", elem_id="extras_single_tab") as tab_single:
|
||||
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
|
||||
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image", image_mode="RGBA")
|
||||
|
||||
with gr.TabItem('Batch Process', id="batch_process", elem_id="extras_batch_process_tab") as tab_batch:
|
||||
image_batch = gr.Files(label="Batch Process", interactive=True, elem_id="extras_image_batch")
|
||||
|
@ -67,7 +67,7 @@ class UiPromptStyles:
|
||||
with gr.Row():
|
||||
self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.")
|
||||
ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles")
|
||||
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply_dialog", tooltip="Apply all selected styles from the style selction dropdown in main UI to the prompt.")
|
||||
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply_dialog", tooltip="Apply all selected styles from the style selection dropdown in main UI to the prompt.")
|
||||
self.copy = ui_components.ToolButton(value=styles_copy_symbol, elem_id=f"{tabname}_style_copy", tooltip="Copy main UI prompt to style.")
|
||||
|
||||
with gr.Row():
|
||||
|
@ -1,7 +1,8 @@
|
||||
import gradio as gr
|
||||
|
||||
from modules import ui_common, shared, script_callbacks, scripts, sd_models, sysinfo, timer
|
||||
from modules import ui_common, shared, script_callbacks, scripts, sd_models, sysinfo, timer, shared_items
|
||||
from modules.call_queue import wrap_gradio_call
|
||||
from modules.options import options_section
|
||||
from modules.shared import opts
|
||||
from modules.ui_components import FormRow
|
||||
from modules.ui_gradio_extensions import reload_javascript
|
||||
@ -98,6 +99,9 @@ class UiSettings:
|
||||
|
||||
return get_value_for_setting(key), opts.dumpjson()
|
||||
|
||||
def register_settings(self):
|
||||
script_callbacks.ui_settings_callback()
|
||||
|
||||
def create_ui(self, loadsave, dummy_component):
|
||||
self.components = []
|
||||
self.component_dict = {}
|
||||
@ -105,7 +109,11 @@ class UiSettings:
|
||||
|
||||
shared.settings_components = self.component_dict
|
||||
|
||||
script_callbacks.ui_settings_callback()
|
||||
# we add this as late as possible so that scripts have already registered their callbacks
|
||||
opts.data_labels.update(options_section(('callbacks', "Callbacks", "system"), {
|
||||
**shared_items.callbacks_order_settings(),
|
||||
}))
|
||||
|
||||
opts.reorder()
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as settings_interface:
|
||||
|
@ -20,7 +20,7 @@ class Upscaler:
|
||||
filter = None
|
||||
model = None
|
||||
user_path = None
|
||||
scalers: []
|
||||
scalers: list
|
||||
tile = True
|
||||
|
||||
def __init__(self, create_dirs=False):
|
||||
@ -57,7 +57,10 @@ class Upscaler:
|
||||
dest_h = int((img.height * scale) // 8 * 8)
|
||||
|
||||
for _ in range(3):
|
||||
if img.width >= dest_w and img.height >= dest_h:
|
||||
if img.width >= dest_w and img.height >= dest_h and scale != 1:
|
||||
break
|
||||
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
shape = (img.width, img.height)
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user