mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
added deepbooru settings (threshold and sort by alpha or likelyhood)
This commit is contained in:
parent
b980e7188c
commit
76ef3d75f6
@ -3,31 +3,32 @@ from concurrent.futures import ProcessPoolExecutor
|
|||||||
import multiprocessing
|
import multiprocessing
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
def get_deepbooru_tags(pil_image):
|
||||||
def get_deepbooru_tags(pil_image, threshold=0.5):
|
|
||||||
"""
|
"""
|
||||||
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
This method is for running only one image at a time for simple use. Used to the img2img interrogate.
|
||||||
"""
|
"""
|
||||||
from modules import shared # prevents circular reference
|
from modules import shared # prevents circular reference
|
||||||
create_deepbooru_process(threshold)
|
create_deepbooru_process(shared.opts.deepbooru_threshold, shared.opts.deepbooru_sort_alpha)
|
||||||
shared.deepbooru_process_return["value"] = -1
|
shared.deepbooru_process_return["value"] = -1
|
||||||
shared.deepbooru_process_queue.put(pil_image)
|
shared.deepbooru_process_queue.put(pil_image)
|
||||||
while shared.deepbooru_process_return["value"] == -1:
|
while shared.deepbooru_process_return["value"] == -1:
|
||||||
time.sleep(0.2)
|
time.sleep(0.2)
|
||||||
|
tags = shared.deepbooru_process_return["value"]
|
||||||
release_process()
|
release_process()
|
||||||
|
return tags
|
||||||
|
|
||||||
|
|
||||||
def deepbooru_process(queue, deepbooru_process_return, threshold):
|
def deepbooru_process(queue, deepbooru_process_return, threshold, alpha_sort):
|
||||||
model, tags = get_deepbooru_tags_model()
|
model, tags = get_deepbooru_tags_model()
|
||||||
while True: # while process is running, keep monitoring queue for new image
|
while True: # while process is running, keep monitoring queue for new image
|
||||||
pil_image = queue.get()
|
pil_image = queue.get()
|
||||||
if pil_image == "QUIT":
|
if pil_image == "QUIT":
|
||||||
break
|
break
|
||||||
else:
|
else:
|
||||||
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold)
|
deepbooru_process_return["value"] = get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort)
|
||||||
|
|
||||||
|
|
||||||
def create_deepbooru_process(threshold=0.5):
|
def create_deepbooru_process(threshold, alpha_sort):
|
||||||
"""
|
"""
|
||||||
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
Creates deepbooru process. A queue is created to send images into the process. This enables multiple images
|
||||||
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
to be processed in a row without reloading the model or creating a new process. To return the data, a shared
|
||||||
@ -40,7 +41,7 @@ def create_deepbooru_process(threshold=0.5):
|
|||||||
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
shared.deepbooru_process_queue = shared.deepbooru_process_manager.Queue()
|
||||||
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
shared.deepbooru_process_return = shared.deepbooru_process_manager.dict()
|
||||||
shared.deepbooru_process_return["value"] = -1
|
shared.deepbooru_process_return["value"] = -1
|
||||||
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold))
|
shared.deepbooru_process = multiprocessing.Process(target=deepbooru_process, args=(shared.deepbooru_process_queue, shared.deepbooru_process_return, threshold, alpha_sort))
|
||||||
shared.deepbooru_process.start()
|
shared.deepbooru_process.start()
|
||||||
|
|
||||||
|
|
||||||
@ -80,7 +81,7 @@ def get_deepbooru_tags_model():
|
|||||||
return model, tags
|
return model, tags
|
||||||
|
|
||||||
|
|
||||||
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5):
|
def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, alpha_sort):
|
||||||
import deepdanbooru as dd
|
import deepdanbooru as dd
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -105,15 +106,28 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold=0.5):
|
|||||||
|
|
||||||
for i, tag in enumerate(tags):
|
for i, tag in enumerate(tags):
|
||||||
result_dict[tag] = y[i]
|
result_dict[tag] = y[i]
|
||||||
result_tags_out = []
|
|
||||||
|
unsorted_tags_in_theshold = []
|
||||||
result_tags_print = []
|
result_tags_print = []
|
||||||
for tag in tags:
|
for tag in tags:
|
||||||
if result_dict[tag] >= threshold:
|
if result_dict[tag] >= threshold:
|
||||||
if tag.startswith("rating:"):
|
if tag.startswith("rating:"):
|
||||||
continue
|
continue
|
||||||
result_tags_out.append(tag)
|
unsorted_tags_in_theshold.append((result_dict[tag], tag))
|
||||||
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||||||
|
|
||||||
|
# sort tags
|
||||||
|
result_tags_out = []
|
||||||
|
sort_ndx = 0
|
||||||
|
print(alpha_sort)
|
||||||
|
if alpha_sort:
|
||||||
|
sort_ndx = 1
|
||||||
|
|
||||||
|
# sort by reverse by likelihood and normal for alpha
|
||||||
|
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
||||||
|
for weight, tag in unsorted_tags_in_theshold:
|
||||||
|
result_tags_out.append(tag)
|
||||||
|
|
||||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||||
|
|
||||||
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
||||||
|
@ -261,6 +261,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
|
|||||||
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
|
if cmd_opts.deepdanbooru:
|
||||||
|
options_templates.update(options_section(('deepbooru-params', "DeepBooru parameters"), {
|
||||||
|
"deepbooru_sort_alpha": OptionInfo(True, "Sort Alphabetical", gr.Checkbox),
|
||||||
|
'deepbooru_threshold': OptionInfo(0.5, "Threshold", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
||||||
|
}))
|
||||||
|
|
||||||
|
|
||||||
class Options:
|
class Options:
|
||||||
data = None
|
data = None
|
||||||
|
Loading…
Reference in New Issue
Block a user