mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
code styling
This commit is contained in:
parent
37e048a7e2
commit
7bb0fbed13
@ -35,17 +35,15 @@ samplers_k_diffusion = [
|
|||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = {0.1: [10, 2, 2]}):
|
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1.):
|
||||||
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
|
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
|
||||||
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
|
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
|
||||||
|
restart_list = {0.1: [10, 2, 2]}
|
||||||
from tqdm.auto import trange, tqdm
|
from tqdm.auto import trange
|
||||||
extra_args = {} if extra_args is None else extra_args
|
extra_args = {} if extra_args is None else extra_args
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
step_id = 0
|
step_id = 0
|
||||||
|
|
||||||
from k_diffusion.sampling import to_d, append_zero
|
from k_diffusion.sampling import to_d, append_zero
|
||||||
|
|
||||||
def heun_step(x, old_sigma, new_sigma):
|
def heun_step(x, old_sigma, new_sigma):
|
||||||
nonlocal step_id
|
nonlocal step_id
|
||||||
denoised = model(x, old_sigma * s_in, **extra_args)
|
denoised = model(x, old_sigma * s_in, **extra_args)
|
||||||
@ -70,8 +68,6 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
for key, value in restart_list.items():
|
for key, value in restart_list.items():
|
||||||
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
|
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
|
||||||
restart_list = temp_list
|
restart_list = temp_list
|
||||||
|
|
||||||
|
|
||||||
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
|
||||||
ramp = torch.linspace(0, 1, n).to(device)
|
ramp = torch.linspace(0, 1, n).to(device)
|
||||||
min_inv_rho = (sigma_min ** (1 / rho))
|
min_inv_rho = (sigma_min ** (1 / rho))
|
||||||
@ -82,7 +78,6 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
max_inv_rho = max_inv_rho.to(device)
|
max_inv_rho = max_inv_rho.to(device)
|
||||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||||
return append_zero(sigmas).to(device)
|
return append_zero(sigmas).to(device)
|
||||||
|
|
||||||
for i in trange(len(sigmas) - 1, disable=disable):
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
x = heun_step(x, sigmas[i], sigmas[i+1])
|
x = heun_step(x, sigmas[i], sigmas[i+1])
|
||||||
if i + 1 in restart_list:
|
if i + 1 in restart_list:
|
||||||
@ -91,7 +86,8 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
||||||
if max_idx < min_idx:
|
if max_idx < min_idx:
|
||||||
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx], sigmas[max_idx], device=sigmas.device)[:-1] # remove the zero at the end
|
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx], sigmas[max_idx], device=sigmas.device)[:-1] # remove the zero at the end
|
||||||
for times in range(restart_times):
|
while restart_times > 0:
|
||||||
|
restart_times -= 1
|
||||||
x = x + torch.randn_like(x) * s_noise * (sigmas[max_idx] ** 2 - sigmas[min_idx] ** 2) ** 0.5
|
x = x + torch.randn_like(x) * s_noise * (sigmas[max_idx] ** 2 - sigmas[min_idx] ** 2) ** 0.5
|
||||||
for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:]):
|
for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:]):
|
||||||
x = heun_step(x, old_sigma, new_sigma)
|
x = heun_step(x, old_sigma, new_sigma)
|
||||||
|
Loading…
Reference in New Issue
Block a user