diff --git a/modules/sd_hijack_unet.py b/modules/sd_hijack_unet.py index ca1daf45f..2101f1a04 100644 --- a/modules/sd_hijack_unet.py +++ b/modules/sd_hijack_unet.py @@ -39,7 +39,10 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs): if isinstance(cond, dict): for y in cond.keys(): - cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]] + if isinstance(cond[y], list): + cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]] + else: + cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y] with devices.autocast(): return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float() @@ -77,3 +80,6 @@ first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devi CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond) CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond) CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond) + +CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast) +CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast) diff --git a/modules/sd_models.py b/modules/sd_models.py index 4d9382dd8..5813b5502 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -326,7 +326,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer timer.record("apply half()") - devices.dtype_unet = model.model.diffusion_model.dtype + devices.dtype_unet = torch.float16 if model.is_sdxl and not shared.cmd_opts.no_half else model.model.diffusion_model.dtype devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16 model.first_stage_model.to(devices.dtype_vae)