mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
Merge pull request #3842 from R-N/gradient-clipping
Gradient clipping in train tab
This commit is contained in:
commit
9092e1ca77
@ -402,10 +402,8 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||
from modules import images
|
||||
|
||||
@ -448,6 +446,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||
return hypernetwork, filename
|
||||
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
||||
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
|
||||
if clip_grad:
|
||||
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
|
||||
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
@ -466,7 +468,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||
shared.parallel_processing_allowed = False
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
||||
|
||||
weights = hypernetwork.weights()
|
||||
hypernetwork.train_mode()
|
||||
|
||||
@ -525,6 +527,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
if clip_grad:
|
||||
clip_grad_sched.step(hypernetwork.step)
|
||||
|
||||
with devices.autocast():
|
||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||
if tag_drop_out != 0 or shuffle_tags:
|
||||
@ -539,14 +544,14 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
||||
|
||||
_loss_step += loss.item()
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# go back until we reach gradient accumulation steps
|
||||
if (j + 1) % gradient_step != 0:
|
||||
continue
|
||||
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
|
||||
# scaler.unscale_(optimizer)
|
||||
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
|
||||
# torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
|
||||
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
|
||||
|
||||
if clip_grad:
|
||||
clip_grad(weights, clip_grad_sched.learn_rate)
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
hypernetwork.step += 1
|
||||
|
@ -58,14 +58,19 @@ class LearnRateScheduler:
|
||||
|
||||
self.finished = False
|
||||
|
||||
def apply(self, optimizer, step_number):
|
||||
def step(self, step_number):
|
||||
if step_number < self.end_step:
|
||||
return
|
||||
return False
|
||||
|
||||
try:
|
||||
(self.learn_rate, self.end_step) = next(self.schedules)
|
||||
except Exception:
|
||||
except StopIteration:
|
||||
self.finished = True
|
||||
return False
|
||||
return True
|
||||
|
||||
def apply(self, optimizer, step_number):
|
||||
if not self.step(step_number):
|
||||
return
|
||||
|
||||
if self.verbose:
|
||||
|
@ -251,8 +251,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
|
||||
if save_model_every or create_image_every:
|
||||
assert log_directory, "Log directory is empty"
|
||||
|
||||
|
||||
def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
save_embedding_every = save_embedding_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
|
||||
@ -295,6 +294,11 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
return embedding, filename
|
||||
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
|
||||
|
||||
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \
|
||||
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \
|
||||
None
|
||||
if clip_grad:
|
||||
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, ititial_step, verbose=False)
|
||||
# dataset loading may take a while, so input validations and early returns should be done before this
|
||||
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
|
||||
old_parallel_processing_allowed = shared.parallel_processing_allowed
|
||||
@ -361,6 +365,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
if shared.state.interrupted:
|
||||
break
|
||||
|
||||
if clip_grad:
|
||||
clip_grad_sched.step(embedding.step)
|
||||
|
||||
with devices.autocast():
|
||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||
c = shared.sd_model.cond_stage_model(batch.cond_text)
|
||||
@ -382,6 +389,10 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
# go back until we reach gradient accumulation steps
|
||||
if (j + 1) % gradient_step != 0:
|
||||
continue
|
||||
|
||||
if clip_grad:
|
||||
clip_grad(embedding.vec, clip_grad_sched.learn_rate)
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
embedding.step += 1
|
||||
|
@ -1290,6 +1290,10 @@ def create_ui():
|
||||
with gr.Row():
|
||||
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate")
|
||||
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate")
|
||||
|
||||
with gr.Row():
|
||||
clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"])
|
||||
clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False)
|
||||
|
||||
batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size")
|
||||
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step")
|
||||
@ -1402,6 +1406,8 @@ def create_ui():
|
||||
training_width,
|
||||
training_height,
|
||||
steps,
|
||||
clip_grad_mode,
|
||||
clip_grad_value,
|
||||
shuffle_tags,
|
||||
tag_drop_out,
|
||||
latent_sampling_method,
|
||||
@ -1431,6 +1437,8 @@ def create_ui():
|
||||
training_width,
|
||||
training_height,
|
||||
steps,
|
||||
clip_grad_mode,
|
||||
clip_grad_value,
|
||||
shuffle_tags,
|
||||
tag_drop_out,
|
||||
latent_sampling_method,
|
||||
|
Loading…
Reference in New Issue
Block a user