diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index d1c46a4b2..d658ad109 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -22,6 +22,8 @@ class NetworkModuleOFT(network.NetworkModule): self.org_module: list[torch.Module] = [self.sd_module] self.scale = 1.0 + self.is_kohya = False + self.is_boft = False # kohya-ss if "oft_blocks" in weights.w.keys(): @@ -29,13 +31,19 @@ class NetworkModuleOFT(network.NetworkModule): self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) self.alpha = weights.w["alpha"] # alpha is constraint self.dim = self.oft_blocks.shape[0] # lora dim - # LyCORIS + # LyCORIS OFT elif "oft_diag" in weights.w.keys(): - self.is_kohya = False self.oft_blocks = weights.w["oft_diag"] # self.alpha is unused self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) + # LyCORIS BOFT + if weights.w["oft_diag"].dim() == 4: + self.is_boft = True + self.rescale = weights.w.get('rescale', None) + if self.rescale is not None: + self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1)) + is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] is_conv = type(self.sd_module) in [torch.nn.Conv2d] is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported @@ -51,6 +59,13 @@ class NetworkModuleOFT(network.NetworkModule): self.constraint = self.alpha * self.out_dim self.num_blocks = self.dim self.block_size = self.out_dim // self.dim + elif self.is_boft: + self.constraint = None + self.boft_m = weights.w["oft_diag"].shape[0] + self.block_num = weights.w["oft_diag"].shape[1] + self.block_size = weights.w["oft_diag"].shape[2] + self.boft_b = self.block_size + #self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim) else: self.constraint = None self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) @@ -68,14 +83,37 @@ class NetworkModuleOFT(network.NetworkModule): R = oft_blocks.to(orig_weight.device) - # This errors out for MultiheadAttention, might need to be handled up-stream - merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) - merged_weight = torch.einsum( - 'k n m, k n ... -> k m ...', - R, - merged_weight - ) - merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') + if not self.is_boft: + # This errors out for MultiheadAttention, might need to be handled up-stream + merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) + merged_weight = torch.einsum( + 'k n m, k n ... -> k m ...', + R, + merged_weight + ) + merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') + else: + # TODO: determine correct value for scale + scale = 1.0 + m = self.boft_m + b = self.boft_b + r_b = b // 2 + inp = orig_weight + for i in range(m): + bi = R[i] # b_num, b_size, b_size + if i == 0: + # Apply multiplier/scale and rescale into first weight + bi = bi * scale + (1 - scale) * eye + inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b) + inp = rearrange(inp, "(d b) ... -> d b ...", b=b) + inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp) + inp = rearrange(inp, "d b ... -> (d b) ...") + inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b) + merged_weight = inp + + # Rescale mechanism + if self.rescale is not None: + merged_weight = self.rescale.to(merged_weight) * merged_weight updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype) output_shape = orig_weight.shape