Add FP32 fallback support on torch.nn.functional.interpolate

This tries to execute interpolate with FP32 if it failed.

Background is that
on some environment such as Mx chip MacOS devices, we get error as follows:

```
"torch/nn/functional.py", line 3931, in interpolate
        return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    RuntimeError: "upsample_nearest2d_channels_last" not implemented for 'Half'
```

In this case, ```--no-half``` doesn't help to solve. Therefore this commits add the FP32 fallback execution to solve it.

Note that the ```upsample_nearest2d``` is called from ```torch.nn.functional.interpolate```.
And the fallback for torch.nn.functional.interpolate is necessary at
```modules/sd_vae_approx.py``` 's ```VAEApprox.forward```
```repositories/stable-diffusion-stability-ai/ldm/modules/diffusionmodules/openaimodel.py``` 's ```Upsample.forward```
This commit is contained in:
hidenorly 2023-11-29 04:45:04 +09:00
parent 39eae9f009
commit a0096c5897

View File

@ -1,6 +1,8 @@
import logging import logging
import torch import torch
from typing import Optional, List
from torch import Tensor
import platform import platform
from modules.sd_hijack_utils import CondFunc from modules.sd_hijack_utils import CondFunc
from packaging import version from packaging import version
@ -51,6 +53,17 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs):
return cumsum_func(input, *args, **kwargs) return cumsum_func(input, *args, **kwargs)
# MPS workaround for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046
def interpolate_with_fp32_fallback(orig_func, *args, **kwargs) -> Tensor:
try:
return orig_func(*args, **kwargs)
except RuntimeError as e:
if "not implemented for" in str(e) and "Half" in str(e):
input_tensor = args[0]
return orig_func(input_tensor.to(torch.float32), *args[1:], **kwargs).to(input_tensor.dtype)
else:
print(f"An unexpected RuntimeError occurred: {str(e)}")
if has_mps: if has_mps:
if platform.mac_ver()[0].startswith("13.2."): if platform.mac_ver()[0].startswith("13.2."):
# MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124) # MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124)
@ -77,6 +90,9 @@ if has_mps:
# MPS workaround for https://github.com/pytorch/pytorch/issues/96113 # MPS workaround for https://github.com/pytorch/pytorch/issues/96113
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps') CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps')
# MPS workaround for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046
CondFunc('torch.nn.functional.interpolate', interpolate_with_fp32_fallback, None)
# MPS workaround for https://github.com/pytorch/pytorch/issues/92311 # MPS workaround for https://github.com/pytorch/pytorch/issues/92311
if platform.processor() == 'i386': if platform.processor() == 'i386':
for funcName in ['torch.argmax', 'torch.Tensor.argmax']: for funcName in ['torch.argmax', 'torch.Tensor.argmax']: