Implementation for sgm_uniform branch

This commit is contained in:
Kohaku-Blueleaf 2024-03-19 20:05:54 +08:00
parent c4a00affc5
commit a6b5a513f9
3 changed files with 21 additions and 2 deletions

View File

@ -0,0 +1,12 @@
import torch
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
sigs = [
inner_model.t_to_sigma(ts)
for ts in torch.linspace(start, end, n)[:-1]
]
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)

View File

@ -3,6 +3,7 @@ import inspect
import k_diffusion.sampling import k_diffusion.sampling
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401 from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
from modules.sd_samplers_custom_schedulers import sgm_uniform
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
from modules.shared import opts from modules.shared import opts
@ -62,7 +63,8 @@ k_diffusion_scheduler = {
'Automatic': None, 'Automatic': None,
'karras': k_diffusion.sampling.get_sigmas_karras, 'karras': k_diffusion.sampling.get_sigmas_karras,
'exponential': k_diffusion.sampling.get_sigmas_exponential, 'exponential': k_diffusion.sampling.get_sigmas_exponential,
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential,
'sgm_uniform' : sgm_uniform,
} }
@ -121,6 +123,11 @@ class KDiffusionSampler(sd_samplers_common.Sampler):
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho: if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
sigmas_kwargs['rho'] = opts.rho sigmas_kwargs['rho'] = opts.rho
p.extra_generation_params["Schedule rho"] = opts.rho p.extra_generation_params["Schedule rho"] = opts.rho
if opts.k_sched_type == 'sgm_uniform':
# Ensure the "step" will be target step + 1
steps += 1 if not discard_next_to_last_sigma else 0
sigmas_kwargs['inner_model'] = self.model_wrap
sigmas_kwargs.pop('rho', None)
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device) sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras': elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':

View File

@ -368,7 +368,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'), 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"), 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'), 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'),
'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential", "sgm_uniform"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule min sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"), 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule min sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule max sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"), 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule max sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"), 'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),