mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
refactor: remove unused function
This commit is contained in:
parent
329c8bacce
commit
bbf00a96af
@ -2,7 +2,6 @@ import torch
|
|||||||
import network
|
import network
|
||||||
from lyco_helpers import factorization
|
from lyco_helpers import factorization
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from modules import devices
|
|
||||||
|
|
||||||
|
|
||||||
class ModuleTypeOFT(network.ModuleType):
|
class ModuleTypeOFT(network.ModuleType):
|
||||||
@ -54,58 +53,12 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||||||
raise ValueError("sd_module must be Linear or Conv")
|
raise ValueError("sd_module must be Linear or Conv")
|
||||||
|
|
||||||
if self.is_kohya:
|
if self.is_kohya:
|
||||||
#self.num_blocks = self.dim
|
|
||||||
#self.block_size = self.out_dim // self.num_blocks
|
|
||||||
#self.block_size = self.dim
|
|
||||||
#self.num_blocks = self.out_dim // self.block_size
|
|
||||||
self.constraint = self.alpha * self.out_dim
|
self.constraint = self.alpha * self.out_dim
|
||||||
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
|
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
|
||||||
else:
|
else:
|
||||||
self.constraint = None
|
self.constraint = None
|
||||||
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
||||||
|
|
||||||
if is_other_linear:
|
|
||||||
self.lin_module = self.create_module(weights.w, "oft_diag", none_ok=True)
|
|
||||||
|
|
||||||
|
|
||||||
def create_module(self, weights, key, none_ok=False):
|
|
||||||
weight = weights.get(key)
|
|
||||||
|
|
||||||
if weight is None and none_ok:
|
|
||||||
return None
|
|
||||||
|
|
||||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
|
|
||||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
|
||||||
|
|
||||||
if is_linear:
|
|
||||||
weight = weight.reshape(weight.shape[0], -1)
|
|
||||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
|
||||||
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
|
|
||||||
if len(weight.shape) == 2:
|
|
||||||
weight = weight.reshape(weight.shape[0], -1, 1, 1)
|
|
||||||
|
|
||||||
if weight.shape[2] != 1 or weight.shape[3] != 1:
|
|
||||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
|
||||||
else:
|
|
||||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
||||||
elif is_conv and key == "lora_mid.weight":
|
|
||||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
|
||||||
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
|
|
||||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
||||||
else:
|
|
||||||
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
|
|
||||||
|
|
||||||
with torch.no_grad():
|
|
||||||
if weight.shape != module.weight.shape:
|
|
||||||
weight = weight.reshape(module.weight.shape)
|
|
||||||
module.weight.copy_(weight)
|
|
||||||
|
|
||||||
module.to(device=devices.cpu, dtype=devices.dtype)
|
|
||||||
module.weight.requires_grad_(False)
|
|
||||||
|
|
||||||
return module
|
|
||||||
|
|
||||||
|
|
||||||
def merge_weight(self, R_weight, org_weight):
|
def merge_weight(self, R_weight, org_weight):
|
||||||
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
||||||
if org_weight.dim() == 4:
|
if org_weight.dim() == 4:
|
||||||
|
Loading…
Reference in New Issue
Block a user