mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
Merge pull request #3511 from bamarillo/master
[API][Feature] Add extras endpoints
This commit is contained in:
commit
d5f31f1e14
@ -1,46 +1,37 @@
|
|||||||
from modules.api.models import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
|
import uvicorn
|
||||||
|
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
|
||||||
|
from fastapi import APIRouter, HTTPException
|
||||||
|
import modules.shared as shared
|
||||||
|
from modules.api.models import *
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||||
from modules.sd_samplers import all_samplers
|
from modules.sd_samplers import all_samplers
|
||||||
from modules.extras import run_pnginfo
|
from modules.extras import run_extras
|
||||||
import modules.shared as shared
|
|
||||||
import uvicorn
|
def upscaler_to_index(name: str):
|
||||||
from fastapi import Body, APIRouter, HTTPException
|
try:
|
||||||
from fastapi.responses import JSONResponse
|
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||||
from pydantic import BaseModel, Field, Json
|
except:
|
||||||
from typing import List
|
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
import json
|
|
||||||
import io
|
|
||||||
import base64
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
||||||
|
|
||||||
class TextToImageResponse(BaseModel):
|
def setUpscalers(req: dict):
|
||||||
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
reqDict = vars(req)
|
||||||
parameters: Json
|
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
|
||||||
info: Json
|
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
|
||||||
|
reqDict.pop('upscaler_1')
|
||||||
class ImageToImageResponse(BaseModel):
|
reqDict.pop('upscaler_2')
|
||||||
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
return reqDict
|
||||||
parameters: Json
|
|
||||||
info: Json
|
|
||||||
|
|
||||||
|
|
||||||
class Api:
|
class Api:
|
||||||
def __init__(self, app, queue_lock):
|
def __init__(self, app, queue_lock):
|
||||||
self.router = APIRouter()
|
self.router = APIRouter()
|
||||||
self.app = app
|
self.app = app
|
||||||
self.queue_lock = queue_lock
|
self.queue_lock = queue_lock
|
||||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
|
||||||
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
|
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
|
||||||
|
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
||||||
def __base64_to_image(self, base64_string):
|
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||||
# if has a comma, deal with prefix
|
|
||||||
if "," in base64_string:
|
|
||||||
base64_string = base64_string.split(",")[1]
|
|
||||||
imgdata = base64.b64decode(base64_string)
|
|
||||||
# convert base64 to PIL image
|
|
||||||
return Image.open(io.BytesIO(imgdata))
|
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||||
@ -60,15 +51,9 @@ class Api:
|
|||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
|
||||||
b64images = []
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
for i in processed.images:
|
|
||||||
buffer = io.BytesIO()
|
|
||||||
i.save(buffer, format="png")
|
|
||||||
b64images.append(base64.b64encode(buffer.getvalue()))
|
|
||||||
|
|
||||||
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.js())
|
|
||||||
|
|
||||||
|
|
||||||
|
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||||
|
|
||||||
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||||
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
||||||
@ -83,7 +68,7 @@ class Api:
|
|||||||
|
|
||||||
mask = img2imgreq.mask
|
mask = img2imgreq.mask
|
||||||
if mask:
|
if mask:
|
||||||
mask = self.__base64_to_image(mask)
|
mask = decode_base64_to_image(mask)
|
||||||
|
|
||||||
|
|
||||||
populate = img2imgreq.copy(update={ # Override __init__ params
|
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||||
@ -98,7 +83,7 @@ class Api:
|
|||||||
|
|
||||||
imgs = []
|
imgs = []
|
||||||
for img in init_images:
|
for img in init_images:
|
||||||
img = self.__base64_to_image(img)
|
img = decode_base64_to_image(img)
|
||||||
imgs = [img] * p.batch_size
|
imgs = [img] * p.batch_size
|
||||||
|
|
||||||
p.init_images = imgs
|
p.init_images = imgs
|
||||||
@ -106,20 +91,39 @@ class Api:
|
|||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
|
||||||
b64images = []
|
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||||
for i in processed.images:
|
|
||||||
buffer = io.BytesIO()
|
|
||||||
i.save(buffer, format="png")
|
|
||||||
b64images.append(base64.b64encode(buffer.getvalue()))
|
|
||||||
|
|
||||||
if (not img2imgreq.include_init_images):
|
if (not img2imgreq.include_init_images):
|
||||||
img2imgreq.init_images = None
|
img2imgreq.init_images = None
|
||||||
img2imgreq.mask = None
|
img2imgreq.mask = None
|
||||||
|
|
||||||
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=processed.js())
|
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
|
||||||
|
|
||||||
def extrasapi(self):
|
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
||||||
raise NotImplementedError
|
reqDict = setUpscalers(req)
|
||||||
|
|
||||||
|
reqDict['image'] = decode_base64_to_image(reqDict['image'])
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
|
||||||
|
|
||||||
|
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
|
||||||
|
|
||||||
|
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
|
||||||
|
reqDict = setUpscalers(req)
|
||||||
|
|
||||||
|
def prepareFiles(file):
|
||||||
|
file = decode_base64_to_file(file.data, file_path=file.name)
|
||||||
|
file.orig_name = file.name
|
||||||
|
return file
|
||||||
|
|
||||||
|
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
|
||||||
|
reqDict.pop('imageList')
|
||||||
|
|
||||||
|
with self.queue_lock:
|
||||||
|
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
|
||||||
|
|
||||||
|
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
|
||||||
|
|
||||||
def pnginfoapi(self):
|
def pnginfoapi(self):
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
from array import array
|
|
||||||
from inflection import underscore
|
|
||||||
from typing import Any, Dict, Optional
|
|
||||||
from pydantic import BaseModel, Field, create_model
|
|
||||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
|
||||||
import inspect
|
import inspect
|
||||||
|
from pydantic import BaseModel, Field, create_model
|
||||||
|
from typing import Any, Optional
|
||||||
|
from typing_extensions import Literal
|
||||||
|
from inflection import underscore
|
||||||
|
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||||
|
from modules.shared import sd_upscalers
|
||||||
|
|
||||||
API_NOT_ALLOWED = [
|
API_NOT_ALLOWED = [
|
||||||
"self",
|
"self",
|
||||||
@ -106,3 +106,46 @@ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
|||||||
StableDiffusionProcessingImg2Img,
|
StableDiffusionProcessingImg2Img,
|
||||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
||||||
).generate_model()
|
).generate_model()
|
||||||
|
|
||||||
|
class TextToImageResponse(BaseModel):
|
||||||
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ImageToImageResponse(BaseModel):
|
||||||
|
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
parameters: dict
|
||||||
|
info: str
|
||||||
|
|
||||||
|
class ExtrasBaseRequest(BaseModel):
|
||||||
|
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
|
||||||
|
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
|
||||||
|
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
|
||||||
|
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
|
||||||
|
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
|
||||||
|
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
|
||||||
|
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
|
||||||
|
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
|
||||||
|
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the choosen size?")
|
||||||
|
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
|
||||||
|
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
|
||||||
|
|
||||||
|
class ExtraBaseResponse(BaseModel):
|
||||||
|
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
|
||||||
|
|
||||||
|
class ExtrasSingleImageRequest(ExtrasBaseRequest):
|
||||||
|
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
|
||||||
|
|
||||||
|
class ExtrasSingleImageResponse(ExtraBaseResponse):
|
||||||
|
image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||||
|
|
||||||
|
class FileData(BaseModel):
|
||||||
|
data: str = Field(title="File data", description="Base64 representation of the file")
|
||||||
|
name: str = Field(title="File name")
|
||||||
|
|
||||||
|
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
|
||||||
|
imageList: list[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
|
||||||
|
|
||||||
|
class ExtrasBatchImagesResponse(ExtraBaseResponse):
|
||||||
|
images: list[str] = Field(title="Images", description="The generated images in base64 format.")
|
Loading…
Reference in New Issue
Block a user