diff --git a/modules/ui_progress.py b/modules/ui_progress.py new file mode 100644 index 000000000..9b9081b5a --- /dev/null +++ b/modules/ui_progress.py @@ -0,0 +1,1928 @@ +import html +import json +import math +import mimetypes +import os +import platform +import random +import subprocess as sp +import sys +import tempfile +import time +import traceback +from functools import partial, reduce + +import gradio as gr +import gradio.routes +import gradio.utils +import numpy as np +from PIL import Image, PngImagePlugin +from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call + +from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru +from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML +from modules.paths import script_path + +from modules.shared import opts, cmd_opts, restricted_opts + +import modules.codeformer_model +import modules.generation_parameters_copypaste as parameters_copypaste +import modules.gfpgan_model +import modules.hypernetworks.ui +import modules.scripts +import modules.shared as shared +import modules.styles +import modules.textual_inversion.ui +from modules import prompt_parser +from modules.images import save_image +from modules.sd_hijack import model_hijack +from modules.sd_samplers import samplers, samplers_for_img2img +from modules.textual_inversion import textual_inversion +import modules.hypernetworks.ui +from modules.generation_parameters_copypaste import image_from_url_text + +# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI +mimetypes.init() +mimetypes.add_type('application/javascript', '.js') + +if not cmd_opts.share and not cmd_opts.listen: + # fix gradio phoning home + gradio.utils.version_check = lambda: None + gradio.utils.get_local_ip_address = lambda: '127.0.0.1' + +if cmd_opts.ngrok is not None: + import modules.ngrok as ngrok + print('ngrok authtoken detected, trying to connect...') + ngrok.connect( + cmd_opts.ngrok, + cmd_opts.port if cmd_opts.port is not None else 7860, + cmd_opts.ngrok_region + ) + + +def gr_show(visible=True): + return {"visible": visible, "__type__": "update"} + + +sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" +sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None + +css_hide_progressbar = """ +.wrap .m-12 svg { display:none!important; } +.wrap .m-12::before { content:"Loading..." } +.wrap .z-20 svg { display:none!important; } +.wrap .z-20::before { content:"Loading..." } +.progress-bar { display:none!important; } +.meta-text { display:none!important; } +.meta-text-center { display:none!important; } +""" + +# Using constants for these since the variation selector isn't visible. +# Important that they exactly match script.js for tooltip to work. +random_symbol = '\U0001f3b2\ufe0f' # 🎲️ +reuse_symbol = '\u267b\ufe0f' # ♻️ +paste_symbol = '\u2199\ufe0f' # ↙ +folder_symbol = '\U0001f4c2' # 📂 +refresh_symbol = '\U0001f504' # 🔄 +save_style_symbol = '\U0001f4be' # 💾 +apply_style_symbol = '\U0001f4cb' # 📋 +clear_prompt_symbol = '\U0001F5D1' # 🗑️ + + +def plaintext_to_html(text): + text = "

" + "
\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "

" + return text + +def send_gradio_gallery_to_image(x): + if len(x) == 0: + return None + return image_from_url_text(x[0]) + +def save_files(js_data, images, do_make_zip, index): + import csv + filenames = [] + fullfns = [] + + #quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it + class MyObject: + def __init__(self, d=None): + if d is not None: + for key, value in d.items(): + setattr(self, key, value) + + data = json.loads(js_data) + + p = MyObject(data) + path = opts.outdir_save + save_to_dirs = opts.use_save_to_dirs_for_ui + extension: str = opts.samples_format + start_index = 0 + + if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only + + images = [images[index]] + start_index = index + + os.makedirs(opts.outdir_save, exist_ok=True) + + with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file: + at_start = file.tell() == 0 + writer = csv.writer(file) + if at_start: + writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"]) + + for image_index, filedata in enumerate(images, start_index): + image = image_from_url_text(filedata) + + is_grid = image_index < p.index_of_first_image + i = 0 if is_grid else (image_index - p.index_of_first_image) + + fullfn, txt_fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs) + + filename = os.path.relpath(fullfn, path) + filenames.append(filename) + fullfns.append(fullfn) + if txt_fullfn: + filenames.append(os.path.basename(txt_fullfn)) + fullfns.append(txt_fullfn) + + writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]]) + + # Make Zip + if do_make_zip: + zip_filepath = os.path.join(path, "images.zip") + + from zipfile import ZipFile + with ZipFile(zip_filepath, "w") as zip_file: + for i in range(len(fullfns)): + with open(fullfns[i], mode="rb") as f: + zip_file.writestr(filenames[i], f.read()) + fullfns.insert(0, zip_filepath) + + return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}") + + +def calc_time_left(progress, threshold, label, force_display, show_eta): + if progress == 0: + return "" + else: + time_since_start = time.time() - shared.state.time_start + eta = (time_since_start/progress) + eta_relative = eta-time_since_start + if (eta_relative > threshold and show_eta) or force_display: + if eta_relative > 3600: + return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative)) + elif eta_relative > 60: + return label + time.strftime('%M:%S', time.gmtime(eta_relative)) + else: + return label + time.strftime('%Ss', time.gmtime(eta_relative)) + else: + return "" + + +def check_progress_call(id_part): + if shared.state.job_count == 0: + return "", gr_show(False), gr_show(False), gr_show(False) + + progress = 0 + + if shared.state.job_count > 0: + progress += shared.state.job_no / shared.state.job_count + if shared.state.sampling_steps > 0: + progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps + + # Show progress percentage and time left at the same moment, and base it also on steps done + show_eta = progress >= 0.01 or shared.state.sampling_step >= 10 + + time_left = calc_time_left(progress, 1, " ETA: ", shared.state.time_left_force_display, show_eta) + if time_left != "": + shared.state.time_left_force_display = True + + progress = min(progress, 1) + + progressbar = "" + if opts.show_progressbar: + progressbar = f"""
{" " * 2 + str(int(progress*100))+"%" + time_left if show_eta else ""}
""" + + image = gr_show(False) + preview_visibility = gr_show(False) + + if opts.show_progress_every_n_steps != 0: + shared.state.set_current_image() + image = shared.state.current_image + + if image is None: + image = gr.update(value=None) + else: + preview_visibility = gr_show(True) + + if shared.state.textinfo is not None: + textinfo_result = gr.HTML.update(value=shared.state.textinfo, visible=True) + else: + textinfo_result = gr_show(False) + + return f"

{progressbar}

", preview_visibility, image, textinfo_result + + +def check_progress_call_initial(id_part): + shared.state.job_count = -1 + shared.state.current_latent = None + shared.state.current_image = None + shared.state.textinfo = None + shared.state.time_start = time.time() + shared.state.time_left_force_display = False + + return check_progress_call(id_part) + + +def visit(x, func, path=""): + if hasattr(x, 'children'): + for c in x.children: + visit(c, func, path) + elif x.label is not None: + func(path + "/" + str(x.label), x) + + +def add_style(name: str, prompt: str, negative_prompt: str): + if name is None: + return [gr_show() for x in range(4)] + + style = modules.styles.PromptStyle(name, prompt, negative_prompt) + shared.prompt_styles.styles[style.name] = style + # Save all loaded prompt styles: this allows us to update the storage format in the future more easily, because we + # reserialize all styles every time we save them + shared.prompt_styles.save_styles(shared.styles_filename) + + return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(4)] + + +def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y): + from modules import processing, devices + + if not enable: + return "" + + p = processing.StableDiffusionProcessingTxt2Img(width=width, height=height, enable_hr=True, hr_scale=hr_scale, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y) + + with devices.autocast(): + p.init([""], [0], [0]) + + return f"resize: from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}" + + +def apply_styles(prompt, prompt_neg, style1_name, style2_name): + prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, [style1_name, style2_name]) + prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, [style1_name, style2_name]) + + return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=prompt_neg), gr.Dropdown.update(value="None"), gr.Dropdown.update(value="None")] + + +def interrogate(image): + prompt = shared.interrogator.interrogate(image.convert("RGB")) + + return gr_show(True) if prompt is None else prompt + + +def interrogate_deepbooru(image): + prompt = deepbooru.model.tag(image) + return gr_show(True) if prompt is None else prompt + + +def create_seed_inputs(target_interface): + with FormRow(elem_id=target_interface + '_seed_row'): + seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed') + seed.style(container=False) + random_seed = gr.Button(random_symbol, elem_id=target_interface + '_random_seed') + reuse_seed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_seed') + + with gr.Group(elem_id=target_interface + '_subseed_show_box'): + seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False) + + # Components to show/hide based on the 'Extra' checkbox + seed_extras = [] + + with FormRow(visible=False, elem_id=target_interface + '_subseed_row') as seed_extra_row_1: + seed_extras.append(seed_extra_row_1) + subseed = gr.Number(label='Variation seed', value=-1, elem_id=target_interface + '_subseed') + subseed.style(container=False) + random_subseed = gr.Button(random_symbol, elem_id=target_interface + '_random_subseed') + reuse_subseed = gr.Button(reuse_symbol, elem_id=target_interface + '_reuse_subseed') + subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=target_interface + '_subseed_strength') + + with FormRow(visible=False) as seed_extra_row_2: + seed_extras.append(seed_extra_row_2) + seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=target_interface + '_seed_resize_from_w') + seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=target_interface + '_seed_resize_from_h') + + random_seed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[seed]) + random_subseed.click(fn=lambda: -1, show_progress=False, inputs=[], outputs=[subseed]) + + def change_visibility(show): + return {comp: gr_show(show) for comp in seed_extras} + + seed_checkbox.change(change_visibility, show_progress=False, inputs=[seed_checkbox], outputs=seed_extras) + + return seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox + + + +def connect_clear_prompt(button): + """Given clear button, prompt, and token_counter objects, setup clear prompt button click event""" + button.click( + _js="clear_prompt", + fn=None, + inputs=[], + outputs=[], + ) + + +def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: gr.Textbox, dummy_component, is_subseed): + """ Connects a 'reuse (sub)seed' button's click event so that it copies last used + (sub)seed value from generation info the to the seed field. If copying subseed and subseed strength + was 0, i.e. no variation seed was used, it copies the normal seed value instead.""" + def copy_seed(gen_info_string: str, index): + res = -1 + + try: + gen_info = json.loads(gen_info_string) + index -= gen_info.get('index_of_first_image', 0) + + if is_subseed and gen_info.get('subseed_strength', 0) > 0: + all_subseeds = gen_info.get('all_subseeds', [-1]) + res = all_subseeds[index if 0 <= index < len(all_subseeds) else 0] + else: + all_seeds = gen_info.get('all_seeds', [-1]) + res = all_seeds[index if 0 <= index < len(all_seeds) else 0] + + except json.decoder.JSONDecodeError as e: + if gen_info_string != '': + print("Error parsing JSON generation info:", file=sys.stderr) + print(gen_info_string, file=sys.stderr) + + return [res, gr_show(False)] + + reuse_seed.click( + fn=copy_seed, + _js="(x, y) => [x, selected_gallery_index()]", + show_progress=False, + inputs=[generation_info, dummy_component], + outputs=[seed, dummy_component] + ) + + +def update_token_counter(text, steps): + try: + _, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text]) + prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps) + + except Exception: + # a parsing error can happen here during typing, and we don't want to bother the user with + # messages related to it in console + prompt_schedules = [[[steps, text]]] + + flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules) + prompts = [prompt_text for step, prompt_text in flat_prompts] + token_count, max_length = max([model_hijack.get_prompt_lengths(prompt) for prompt in prompts], key=lambda args: args[0]) + style_class = ' class="red"' if (token_count > max_length) else "" + return f"{token_count}/{max_length}" + + +def create_toprow(is_img2img): + id_part = "img2img" if is_img2img else "txt2img" + + with gr.Row(elem_id="toprow"): + with gr.Column(scale=6): + with gr.Row(): + with gr.Column(scale=80): + with gr.Row(): + prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2, + placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)" + ) + + with gr.Row(): + with gr.Column(scale=80): + with gr.Row(): + negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, + placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)" + ) + + with gr.Column(scale=1, elem_id="roll_col"): + paste = gr.Button(value=paste_symbol, elem_id="paste") + save_style = gr.Button(value=save_style_symbol, elem_id="style_create") + prompt_style_apply = gr.Button(value=apply_style_symbol, elem_id="style_apply") + clear_prompt_button = gr.Button(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt") + token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") + token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") + + clear_prompt_button.click( + fn=lambda *x: x, + _js="confirm_clear_prompt", + inputs=[prompt, negative_prompt], + outputs=[prompt, negative_prompt], + ) + + button_interrogate = None + button_deepbooru = None + if is_img2img: + with gr.Column(scale=1, elem_id="interrogate_col"): + button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") + button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") + + with gr.Column(scale=1): + with gr.Row(): + skip = gr.Button('Skip', elem_id=f"{id_part}_skip") + interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt") + submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary') + + skip.click( + fn=lambda: shared.state.skip(), + inputs=[], + outputs=[], + ) + + interrupt.click( + fn=lambda: shared.state.interrupt(), + inputs=[], + outputs=[], + ) + + with gr.Row(): + with gr.Column(scale=1, elem_id="style_pos_col"): + prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) + + with gr.Column(scale=1, elem_id="style_neg_col"): + prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) + + return prompt, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button + + +def setup_progressbar(progressbar, preview, id_part, textinfo=None): + if textinfo is None: + textinfo = gr.HTML(visible=False) + + check_progress = gr.Button('Check progress', elem_id=f"{id_part}_check_progress", visible=False) + check_progress.click( + fn=lambda: check_progress_call(id_part), + show_progress=False, + inputs=[], + outputs=[progressbar, preview, preview, textinfo], + ) + + check_progress_initial = gr.Button('Check progress (first)', elem_id=f"{id_part}_check_progress_initial", visible=False) + check_progress_initial.click( + fn=lambda: check_progress_call_initial(id_part), + show_progress=False, + inputs=[], + outputs=[progressbar, preview, preview, textinfo], + ) + + +def apply_setting(key, value): + if value is None: + return gr.update() + + if shared.cmd_opts.freeze_settings: + return gr.update() + + # dont allow model to be swapped when model hash exists in prompt + if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap: + return gr.update() + + if key == "sd_model_checkpoint": + ckpt_info = sd_models.get_closet_checkpoint_match(value) + + if ckpt_info is not None: + value = ckpt_info.title + else: + return gr.update() + + comp_args = opts.data_labels[key].component_args + if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: + return + + valtype = type(opts.data_labels[key].default) + oldval = opts.data.get(key, None) + opts.data[key] = valtype(value) if valtype != type(None) else value + if oldval != value and opts.data_labels[key].onchange is not None: + opts.data_labels[key].onchange() + + opts.save(shared.config_filename) + return value + + +def update_generation_info(args): + generation_info, html_info, img_index = args + try: + generation_info = json.loads(generation_info) + if img_index < 0 or img_index >= len(generation_info["infotexts"]): + return html_info + return plaintext_to_html(generation_info["infotexts"][img_index]) + except Exception: + pass + # if the json parse or anything else fails, just return the old html_info + return html_info + + +def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): + def refresh(): + refresh_method() + args = refreshed_args() if callable(refreshed_args) else refreshed_args + + for k, v in args.items(): + setattr(refresh_component, k, v) + + return gr.update(**(args or {})) + + refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id) + refresh_button.click( + fn=refresh, + inputs=[], + outputs=[refresh_component] + ) + return refresh_button + + +def create_output_panel(tabname, outdir): + def open_folder(f): + if not os.path.exists(f): + print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.') + return + elif not os.path.isdir(f): + print(f""" +WARNING +An open_folder request was made with an argument that is not a folder. +This could be an error or a malicious attempt to run code on your computer. +Requested path was: {f} +""", file=sys.stderr) + return + + if not shared.cmd_opts.hide_ui_dir_config: + path = os.path.normpath(f) + if platform.system() == "Windows": + os.startfile(path) + elif platform.system() == "Darwin": + sp.Popen(["open", path]) + elif "microsoft-standard-WSL2" in platform.uname().release: + sp.Popen(["wsl-open", path]) + else: + sp.Popen(["xdg-open", path]) + + with gr.Column(variant='panel'): + with gr.Group(): + result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4) + + generation_info = None + with gr.Column(): + with gr.Row(elem_id=f"image_buttons_{tabname}"): + open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}') + + if tabname != "extras": + save = gr.Button('Save', elem_id=f'save_{tabname}') + save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}') + + buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"]) + + open_folder_button.click( + fn=lambda: open_folder(opts.outdir_samples or outdir), + inputs=[], + outputs=[], + ) + + if tabname != "extras": + with gr.Row(): + download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}') + + with gr.Group(): + html_info = gr.HTML(elem_id=f'html_info_{tabname}') + html_log = gr.HTML(elem_id=f'html_log_{tabname}') + + generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}') + if tabname == 'txt2img' or tabname == 'img2img': + generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button") + generation_info_button.click( + fn=update_generation_info, + _js="(x, y) => [x, y, selected_gallery_index()]", + inputs=[generation_info, html_info], + outputs=[html_info], + preprocess=False + ) + + save.click( + fn=wrap_gradio_call(save_files), + _js="(x, y, z, w) => [x, y, false, selected_gallery_index()]", + inputs=[ + generation_info, + result_gallery, + html_info, + html_info, + ], + outputs=[ + download_files, + html_log, + ] + ) + + save_zip.click( + fn=wrap_gradio_call(save_files), + _js="(x, y, z, w) => [x, y, true, selected_gallery_index()]", + inputs=[ + generation_info, + result_gallery, + html_info, + html_info, + ], + outputs=[ + download_files, + html_log, + ] + ) + + else: + html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}') + html_info = gr.HTML(elem_id=f'html_info_{tabname}') + html_log = gr.HTML(elem_id=f'html_log_{tabname}') + + parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None) + return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log + + +def create_sampler_and_steps_selection(choices, tabname): + if opts.samplers_in_dropdown: + with FormRow(elem_id=f"sampler_selection_{tabname}"): + sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") + steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) + else: + with FormGroup(elem_id=f"sampler_selection_{tabname}"): + steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) + sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") + + return steps, sampler_index + + +def ordered_ui_categories(): + user_order = {x.strip(): i for i, x in enumerate(shared.opts.ui_reorder.split(","))} + + for i, category in sorted(enumerate(shared.ui_reorder_categories), key=lambda x: user_order.get(x[1], x[0] + 1000)): + yield category + + +def create_ui(): + import modules.img2img + import modules.txt2img + + reload_javascript() + + parameters_copypaste.reset() + + modules.scripts.scripts_current = modules.scripts.scripts_txt2img + modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False) + + with gr.Blocks(analytics_enabled=False) as txt2img_interface: + txt2img_prompt, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _,txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False) + + dummy_component = gr.Label(visible=False) + txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="bytes", visible=False) + + with gr.Row(elem_id='txt2img_progress_row'): + with gr.Column(scale=1): + pass + + with gr.Column(scale=1): + progressbar = gr.HTML(elem_id="txt2img_progressbar") + txt2img_preview = gr.Image(elem_id='txt2img_preview', visible=False) + setup_progressbar(progressbar, txt2img_preview, 'txt2img') + + with gr.Row().style(equal_height=False): + with gr.Column(variant='panel', elem_id="txt2img_settings"): + for category in ordered_ui_categories(): + if category == "sampler": + steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img") + + elif category == "dimensions": + with FormRow(): + with gr.Column(elem_id="txt2img_column_size", scale=4): + width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width") + height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height") + + if opts.dimensions_and_batch_together: + with gr.Column(elem_id="txt2img_column_batch"): + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") + batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") + + elif category == "cfg": + cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale") + + elif category == "seed": + seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img') + + elif category == "checkboxes": + with FormRow(elem_id="txt2img_checkboxes"): + restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") + tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") + enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") + hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) + + elif category == "hires_fix": + with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options: + with FormRow(elem_id="txt2img_hires_fix_row1"): + hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) + hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") + + with FormRow(elem_id="txt2img_hires_fix_row2"): + hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") + hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") + hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") + + elif category == "batch": + if not opts.dimensions_and_batch_together: + with FormRow(elem_id="txt2img_column_batch"): + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") + batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") + + elif category == "scripts": + with FormGroup(elem_id="txt2img_script_container"): + custom_inputs = modules.scripts.scripts_txt2img.setup_ui() + + hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] + for input in hr_resolution_preview_inputs: + input.change( + fn=calc_resolution_hires, + inputs=hr_resolution_preview_inputs, + outputs=[hr_final_resolution], + show_progress=False, + ) + input.change( + None, + _js="onCalcResolutionHires", + inputs=hr_resolution_preview_inputs, + outputs=[], + show_progress=False, + ) + + txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) + parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt) + + connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) + connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) + + txt2img_args = dict( + fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']), + _js="submit", + inputs=[ + txt2img_prompt, + txt2img_negative_prompt, + txt2img_prompt_style, + txt2img_prompt_style2, + steps, + sampler_index, + restore_faces, + tiling, + batch_count, + batch_size, + cfg_scale, + seed, + subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, + height, + width, + enable_hr, + denoising_strength, + hr_scale, + hr_upscaler, + hr_second_pass_steps, + hr_resize_x, + hr_resize_y, + ] + custom_inputs, + + outputs=[ + txt2img_gallery, + generation_info, + html_info, + html_log, + ], + show_progress=False, + ) + + txt2img_prompt.submit(**txt2img_args) + submit.click(**txt2img_args) + + txt_prompt_img.change( + fn=modules.images.image_data, + inputs=[ + txt_prompt_img + ], + outputs=[ + txt2img_prompt, + txt_prompt_img + ] + ) + + enable_hr.change( + fn=lambda x: gr_show(x), + inputs=[enable_hr], + outputs=[hr_options], + show_progress = False, + ) + + txt2img_paste_fields = [ + (txt2img_prompt, "Prompt"), + (txt2img_negative_prompt, "Negative prompt"), + (steps, "Steps"), + (sampler_index, "Sampler"), + (restore_faces, "Face restoration"), + (cfg_scale, "CFG scale"), + (seed, "Seed"), + (width, "Size-1"), + (height, "Size-2"), + (batch_size, "Batch size"), + (subseed, "Variation seed"), + (subseed_strength, "Variation seed strength"), + (seed_resize_from_w, "Seed resize from-1"), + (seed_resize_from_h, "Seed resize from-2"), + (denoising_strength, "Denoising strength"), + (enable_hr, lambda d: "Denoising strength" in d), + (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), + (hr_scale, "Hires upscale"), + (hr_upscaler, "Hires upscaler"), + (hr_second_pass_steps, "Hires steps"), + (hr_resize_x, "Hires resize-1"), + (hr_resize_y, "Hires resize-2"), + *modules.scripts.scripts_txt2img.infotext_fields + ] + parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields) + + txt2img_preview_params = [ + txt2img_prompt, + txt2img_negative_prompt, + steps, + sampler_index, + cfg_scale, + seed, + width, + height, + ] + + token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter]) + + modules.scripts.scripts_current = modules.scripts.scripts_img2img + modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True) + + with gr.Blocks(analytics_enabled=False) as img2img_interface: + img2img_prompt, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste,token_counter, token_button = create_toprow(is_img2img=True) + + with gr.Row(elem_id='img2img_progress_row'): + img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="bytes", visible=False) + + with gr.Column(scale=1): + pass + + with gr.Column(scale=1): + progressbar = gr.HTML(elem_id="img2img_progressbar") + img2img_preview = gr.Image(elem_id='img2img_preview', visible=False) + setup_progressbar(progressbar, img2img_preview, 'img2img') + + with FormRow().style(equal_height=False): + with gr.Column(variant='panel', elem_id="img2img_settings"): + + with gr.Tabs(elem_id="mode_img2img") as tabs_img2img_mode: + with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab"): + init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool, image_mode="RGBA").style(height=480) + + with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab"): + init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480) + init_img_with_mask_orig = gr.State(None) + + use_color_sketch = cmd_opts.gradio_inpaint_tool == "color-sketch" + if use_color_sketch: + def update_orig(image, state): + if image is not None: + same_size = state is not None and state.size == image.size + has_exact_match = np.any(np.all(np.array(image) == np.array(state), axis=-1)) + edited = same_size and has_exact_match + return image if not edited or state is None else state + + init_img_with_mask.change(update_orig, [init_img_with_mask, init_img_with_mask_orig], init_img_with_mask_orig) + + init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base") + init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask") + + with FormRow(): + mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur") + mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch, elem_id="img2img_mask_alpha") + + with FormRow(): + mask_mode = gr.Radio(label="Mask source", choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode") + inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode") + + with FormRow(): + inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill") + + with FormRow(): + with gr.Column(): + inpaint_full_res = gr.Radio(label="Inpaint area", choices=["Whole picture", "Only masked"], type="index", value="Whole picture", elem_id="img2img_inpaint_full_res") + + with gr.Column(scale=4): + inpaint_full_res_padding = gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding") + + with gr.TabItem('Batch img2img', id='batch', elem_id="img2img_batch_tab"): + hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else '' + gr.HTML(f"

Process images in a directory on the same machine where the server is running.
Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}

") + img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir") + img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir") + + with FormRow(): + resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize") + + for category in ordered_ui_categories(): + if category == "sampler": + steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img") + + elif category == "dimensions": + with FormRow(): + with gr.Column(elem_id="img2img_column_size", scale=4): + width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") + height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height") + + if opts.dimensions_and_batch_together: + with gr.Column(elem_id="img2img_column_batch"): + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") + batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") + + elif category == "cfg": + with FormGroup(): + cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") + denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") + + elif category == "seed": + seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img') + + elif category == "checkboxes": + with FormRow(elem_id="img2img_checkboxes"): + restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") + tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") + + elif category == "batch": + if not opts.dimensions_and_batch_together: + with FormRow(elem_id="img2img_column_batch"): + batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") + batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") + + elif category == "scripts": + with FormGroup(elem_id="img2img_script_container"): + custom_inputs = modules.scripts.scripts_img2img.setup_ui() + + img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) + parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt) + + connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) + connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) + + img2img_prompt_img.change( + fn=modules.images.image_data, + inputs=[ + img2img_prompt_img + ], + outputs=[ + img2img_prompt, + img2img_prompt_img + ] + ) + + mask_mode.change( + lambda mode, img: { + init_img_with_mask: gr_show(mode == 0), + init_img_inpaint: gr_show(mode == 1), + init_mask_inpaint: gr_show(mode == 1), + }, + inputs=[mask_mode, init_img_with_mask], + outputs=[ + init_img_with_mask, + init_img_inpaint, + init_mask_inpaint, + ], + ) + + img2img_args = dict( + fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']), + _js="submit_img2img", + inputs=[ + dummy_component, + img2img_prompt, + img2img_negative_prompt, + img2img_prompt_style, + img2img_prompt_style2, + init_img, + init_img_with_mask, + init_img_with_mask_orig, + init_img_inpaint, + init_mask_inpaint, + mask_mode, + steps, + sampler_index, + mask_blur, + mask_alpha, + inpainting_fill, + restore_faces, + tiling, + batch_count, + batch_size, + cfg_scale, + denoising_strength, + seed, + subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, + height, + width, + resize_mode, + inpaint_full_res, + inpaint_full_res_padding, + inpainting_mask_invert, + img2img_batch_input_dir, + img2img_batch_output_dir, + ] + custom_inputs, + outputs=[ + img2img_gallery, + generation_info, + html_info, + html_log, + ], + show_progress=False, + ) + + img2img_prompt.submit(**img2img_args) + submit.click(**img2img_args) + + img2img_interrogate.click( + fn=interrogate, + inputs=[init_img], + outputs=[img2img_prompt], + ) + + img2img_deepbooru.click( + fn=interrogate_deepbooru, + inputs=[init_img], + outputs=[img2img_prompt], + ) + + prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)] + style_dropdowns = [(txt2img_prompt_style, txt2img_prompt_style2), (img2img_prompt_style, img2img_prompt_style2)] + style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"] + + for button, (prompt, negative_prompt) in zip([txt2img_save_style, img2img_save_style], prompts): + button.click( + fn=add_style, + _js="ask_for_style_name", + # Have to pass empty dummy component here, because the JavaScript and Python function have to accept + # the same number of parameters, but we only know the style-name after the JavaScript prompt + inputs=[dummy_component, prompt, negative_prompt], + outputs=[txt2img_prompt_style, img2img_prompt_style, txt2img_prompt_style2, img2img_prompt_style2], + ) + + for button, (prompt, negative_prompt), (style1, style2), js_func in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns, style_js_funcs): + button.click( + fn=apply_styles, + _js=js_func, + inputs=[prompt, negative_prompt, style1, style2], + outputs=[prompt, negative_prompt, style1, style2], + ) + + token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) + + img2img_paste_fields = [ + (img2img_prompt, "Prompt"), + (img2img_negative_prompt, "Negative prompt"), + (steps, "Steps"), + (sampler_index, "Sampler"), + (restore_faces, "Face restoration"), + (cfg_scale, "CFG scale"), + (seed, "Seed"), + (width, "Size-1"), + (height, "Size-2"), + (batch_size, "Batch size"), + (subseed, "Variation seed"), + (subseed_strength, "Variation seed strength"), + (seed_resize_from_w, "Seed resize from-1"), + (seed_resize_from_h, "Seed resize from-2"), + (denoising_strength, "Denoising strength"), + (mask_blur, "Mask blur"), + *modules.scripts.scripts_img2img.infotext_fields + ] + parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields) + parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields) + + modules.scripts.scripts_current = None + + with gr.Blocks(analytics_enabled=False) as extras_interface: + with gr.Row().style(equal_height=False): + with gr.Column(variant='panel'): + with gr.Tabs(elem_id="mode_extras"): + with gr.TabItem('Single Image', elem_id="extras_single_tab"): + extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image") + + with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"): + image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch") + + with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"): + extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir") + extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir") + show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results") + + submit = gr.Button('Generate', elem_id="extras_generate", variant='primary') + + with gr.Tabs(elem_id="extras_resize_mode"): + with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"): + upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize") + with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"): + with gr.Group(): + with gr.Row(): + upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w") + upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h") + upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop") + + with gr.Group(): + extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") + + with gr.Group(): + extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") + extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility") + + with gr.Group(): + gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility") + + with gr.Group(): + codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility") + codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight") + + with gr.Group(): + upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix") + + result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples) + + submit.click( + fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']), + _js="get_extras_tab_index", + inputs=[ + dummy_component, + dummy_component, + extras_image, + image_batch, + extras_batch_input_dir, + extras_batch_output_dir, + show_extras_results, + gfpgan_visibility, + codeformer_visibility, + codeformer_weight, + upscaling_resize, + upscaling_resize_w, + upscaling_resize_h, + upscaling_crop, + extras_upscaler_1, + extras_upscaler_2, + extras_upscaler_2_visibility, + upscale_before_face_fix, + ], + outputs=[ + result_images, + html_info_x, + html_info, + ] + ) + parameters_copypaste.add_paste_fields("extras", extras_image, None) + + extras_image.change( + fn=modules.extras.clear_cache, + inputs=[], outputs=[] + ) + + with gr.Blocks(analytics_enabled=False) as pnginfo_interface: + with gr.Row().style(equal_height=False): + with gr.Column(variant='panel'): + image = gr.Image(elem_id="pnginfo_image", label="Source", source="upload", interactive=True, type="pil") + + with gr.Column(variant='panel'): + html = gr.HTML() + generation_info = gr.Textbox(visible=False, elem_id="pnginfo_generation_info") + html2 = gr.HTML() + with gr.Row(): + buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) + parameters_copypaste.bind_buttons(buttons, image, generation_info) + + image.change( + fn=wrap_gradio_call(modules.extras.run_pnginfo), + inputs=[image], + outputs=[html, generation_info, html2], + ) + + with gr.Blocks(analytics_enabled=False) as modelmerger_interface: + with gr.Row().style(equal_height=False): + with gr.Column(variant='panel'): + gr.HTML(value="

A merger of the two checkpoints will be generated in your checkpoint directory.

") + + with gr.Row(): + primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)") + create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A") + + secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)") + create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B") + + tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)") + create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C") + + custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name") + interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount") + interp_method = gr.Radio(choices=["Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method") + + with gr.Row(): + checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="ckpt", label="Checkpoint format", elem_id="modelmerger_checkpoint_format") + save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half") + + modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') + + with gr.Column(variant='panel'): + submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) + + with gr.Blocks(analytics_enabled=False) as train_interface: + with gr.Row().style(equal_height=False): + gr.HTML(value="

See wiki for detailed explanation.

") + + with gr.Row().style(equal_height=False): + with gr.Tabs(elem_id="train_tabs"): + + with gr.Tab(label="Create embedding"): + new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name") + initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text") + nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt") + overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding") + + with gr.Row(): + with gr.Column(scale=3): + gr.HTML(value="") + + with gr.Column(): + create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding") + + with gr.Tab(label="Create hypernetwork"): + new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name") + new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes") + new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure") + new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func") + new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option") + new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm") + new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout") + new_hypernetwork_dropout_structure = gr.Textbox("0, 0, 0", label="Enter hypernetwork Dropout structure (or empty). Recommended : 0~0.35 incrementing sequence: 0, 0.05, 0.15", placeholder="1st and last digit must be 0 and values should be between 0 and 1. ex:'0, 0.01, 0'") + overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork") + + with gr.Row(): + with gr.Column(scale=3): + gr.HTML(value="") + + with gr.Column(): + create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork") + + with gr.Tab(label="Preprocess images"): + process_src = gr.Textbox(label='Source directory', elem_id="train_process_src") + process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst") + process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width") + process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height") + preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action") + + with gr.Row(): + process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip") + process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split") + process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop") + process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption") + process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru") + + with gr.Row(visible=False) as process_split_extra_row: + process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold") + process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio") + + with gr.Row(visible=False) as process_focal_crop_row: + process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight") + process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight") + process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight") + process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") + + with gr.Row(): + with gr.Column(scale=3): + gr.HTML(value="") + + with gr.Column(): + with gr.Row(): + interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing") + run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess") + + process_split.change( + fn=lambda show: gr_show(show), + inputs=[process_split], + outputs=[process_split_extra_row], + ) + + process_focal_crop.change( + fn=lambda show: gr_show(show), + inputs=[process_focal_crop], + outputs=[process_focal_crop_row], + ) + + def get_textual_inversion_template_names(): + return sorted([x for x in textual_inversion.textual_inversion_templates]) + + with gr.Tab(label="Train"): + gr.HTML(value="

Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]

") + with FormRow(): + train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) + create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") + + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) + create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") + + with FormRow(): + embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") + hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") + + with FormRow(): + clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) + clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) + + with FormRow(): + batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") + gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") + + dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") + log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") + + with FormRow(): + template_file = gr.Dropdown(label='Prompt template', value="style_filewords.txt", elem_id="train_template_file", choices=get_textual_inversion_template_names()) + create_refresh_button(template_file, textual_inversion.list_textual_inversion_templates, lambda: {"choices": get_textual_inversion_template_names()}, "refrsh_train_template_file") + + training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") + training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") + varsize = gr.Checkbox(label="Do not resize images", value=False, elem_id="train_varsize") + steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps") + + with FormRow(): + create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") + save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") + + save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") + preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") + + shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") + tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") + + latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") + + with gr.Row(): + train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") + interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training") + train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork") + + params = script_callbacks.UiTrainTabParams(txt2img_preview_params) + + script_callbacks.ui_train_tabs_callback(params) + + with gr.Column(): + progressbar = gr.HTML(elem_id="ti_progressbar") + ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) + + ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4) + ti_preview = gr.Image(elem_id='ti_preview', visible=False) + ti_progress = gr.HTML(elem_id="ti_progress", value="") + ti_outcome = gr.HTML(elem_id="ti_error", value="") + setup_progressbar(progressbar, ti_preview, 'ti', textinfo=ti_progress) + + create_embedding.click( + fn=modules.textual_inversion.ui.create_embedding, + inputs=[ + new_embedding_name, + initialization_text, + nvpt, + overwrite_old_embedding, + ], + outputs=[ + train_embedding_name, + ti_output, + ti_outcome, + ] + ) + + create_hypernetwork.click( + fn=modules.hypernetworks.ui.create_hypernetwork, + inputs=[ + new_hypernetwork_name, + new_hypernetwork_sizes, + overwrite_old_hypernetwork, + new_hypernetwork_layer_structure, + new_hypernetwork_activation_func, + new_hypernetwork_initialization_option, + new_hypernetwork_add_layer_norm, + new_hypernetwork_use_dropout, + new_hypernetwork_dropout_structure + ], + outputs=[ + train_hypernetwork_name, + ti_output, + ti_outcome, + ] + ) + + run_preprocess.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + process_src, + process_dst, + process_width, + process_height, + preprocess_txt_action, + process_flip, + process_split, + process_caption, + process_caption_deepbooru, + process_split_threshold, + process_overlap_ratio, + process_focal_crop, + process_focal_crop_face_weight, + process_focal_crop_entropy_weight, + process_focal_crop_edges_weight, + process_focal_crop_debug, + ], + outputs=[ + ti_output, + ti_outcome, + ], + ) + + train_embedding.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + train_embedding_name, + embedding_learn_rate, + batch_size, + gradient_step, + dataset_directory, + log_directory, + training_width, + training_height, + varsize, + steps, + clip_grad_mode, + clip_grad_value, + shuffle_tags, + tag_drop_out, + latent_sampling_method, + create_image_every, + save_embedding_every, + template_file, + save_image_with_stored_embedding, + preview_from_txt2img, + *txt2img_preview_params, + ], + outputs=[ + ti_output, + ti_outcome, + ] + ) + + train_hypernetwork.click( + fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + train_hypernetwork_name, + hypernetwork_learn_rate, + batch_size, + gradient_step, + dataset_directory, + log_directory, + training_width, + training_height, + varsize, + steps, + clip_grad_mode, + clip_grad_value, + shuffle_tags, + tag_drop_out, + latent_sampling_method, + create_image_every, + save_embedding_every, + template_file, + preview_from_txt2img, + *txt2img_preview_params, + ], + outputs=[ + ti_output, + ti_outcome, + ] + ) + + interrupt_training.click( + fn=lambda: shared.state.interrupt(), + inputs=[], + outputs=[], + ) + + interrupt_preprocessing.click( + fn=lambda: shared.state.interrupt(), + inputs=[], + outputs=[], + ) + + def create_setting_component(key, is_quicksettings=False): + def fun(): + return opts.data[key] if key in opts.data else opts.data_labels[key].default + + info = opts.data_labels[key] + t = type(info.default) + + args = info.component_args() if callable(info.component_args) else info.component_args + + if info.component is not None: + comp = info.component + elif t == str: + comp = gr.Textbox + elif t == int: + comp = gr.Number + elif t == bool: + comp = gr.Checkbox + else: + raise Exception(f'bad options item type: {str(t)} for key {key}') + + elem_id = "setting_"+key + + if info.refresh is not None: + if is_quicksettings: + res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) + create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) + else: + with FormRow(): + res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) + create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) + else: + res = comp(label=info.label, value=fun(), elem_id=elem_id, **(args or {})) + + return res + + components = [] + component_dict = {} + + script_callbacks.ui_settings_callback() + opts.reorder() + + def run_settings(*args): + changed = [] + + for key, value, comp in zip(opts.data_labels.keys(), args, components): + assert comp == dummy_component or opts.same_type(value, opts.data_labels[key].default), f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}" + + for key, value, comp in zip(opts.data_labels.keys(), args, components): + if comp == dummy_component: + continue + + if opts.set(key, value): + changed.append(key) + + try: + opts.save(shared.config_filename) + except RuntimeError: + return opts.dumpjson(), f'{len(changed)} settings changed without save: {", ".join(changed)}.' + return opts.dumpjson(), f'{len(changed)} settings changed{": " if len(changed) > 0 else ""}{", ".join(changed)}.' + + def run_settings_single(value, key): + if not opts.same_type(value, opts.data_labels[key].default): + return gr.update(visible=True), opts.dumpjson() + + if not opts.set(key, value): + return gr.update(value=getattr(opts, key)), opts.dumpjson() + + opts.save(shared.config_filename) + + return gr.update(value=value), opts.dumpjson() + + with gr.Blocks(analytics_enabled=False) as settings_interface: + with gr.Row(): + with gr.Column(scale=6): + settings_submit = gr.Button(value="Apply settings", variant='primary', elem_id="settings_submit") + with gr.Column(): + restart_gradio = gr.Button(value='Reload UI', variant='primary', elem_id="settings_restart_gradio") + + result = gr.HTML(elem_id="settings_result") + + quicksettings_names = [x.strip() for x in opts.quicksettings.split(",")] + quicksettings_names = {x: i for i, x in enumerate(quicksettings_names) if x != 'quicksettings'} + + quicksettings_list = [] + + previous_section = None + current_tab = None + with gr.Tabs(elem_id="settings"): + for i, (k, item) in enumerate(opts.data_labels.items()): + section_must_be_skipped = item.section[0] is None + + if previous_section != item.section and not section_must_be_skipped: + elem_id, text = item.section + + if current_tab is not None: + current_tab.__exit__() + + current_tab = gr.TabItem(elem_id="settings_{}".format(elem_id), label=text) + current_tab.__enter__() + + previous_section = item.section + + if k in quicksettings_names and not shared.cmd_opts.freeze_settings: + quicksettings_list.append((i, k, item)) + components.append(dummy_component) + elif section_must_be_skipped: + components.append(dummy_component) + else: + component = create_setting_component(k) + component_dict[k] = component + components.append(component) + + if current_tab is not None: + current_tab.__exit__() + + with gr.TabItem("Actions"): + request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications") + download_localization = gr.Button(value='Download localization template', elem_id="download_localization") + reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary', elem_id="settings_reload_script_bodies") + + if os.path.exists("html/licenses.html"): + with open("html/licenses.html", encoding="utf8") as file: + with gr.TabItem("Licenses"): + gr.HTML(file.read(), elem_id="licenses") + + gr.Button(value="Show all pages", elem_id="settings_show_all_pages") + + request_notifications.click( + fn=lambda: None, + inputs=[], + outputs=[], + _js='function(){}' + ) + + download_localization.click( + fn=lambda: None, + inputs=[], + outputs=[], + _js='download_localization' + ) + + def reload_scripts(): + modules.scripts.reload_script_body_only() + reload_javascript() # need to refresh the html page + + reload_script_bodies.click( + fn=reload_scripts, + inputs=[], + outputs=[] + ) + + def request_restart(): + shared.state.interrupt() + shared.state.need_restart = True + + restart_gradio.click( + fn=request_restart, + _js='restart_reload', + inputs=[], + outputs=[], + ) + + interfaces = [ + (txt2img_interface, "txt2img", "txt2img"), + (img2img_interface, "img2img", "img2img"), + (extras_interface, "Extras", "extras"), + (pnginfo_interface, "PNG Info", "pnginfo"), + (modelmerger_interface, "Checkpoint Merger", "modelmerger"), + (train_interface, "Train", "ti"), + ] + + css = "" + + for cssfile in modules.scripts.list_files_with_name("style.css"): + if not os.path.isfile(cssfile): + continue + + with open(cssfile, "r", encoding="utf8") as file: + css += file.read() + "\n" + + if os.path.exists(os.path.join(script_path, "user.css")): + with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file: + css += file.read() + "\n" + + if not cmd_opts.no_progressbar_hiding: + css += css_hide_progressbar + + interfaces += script_callbacks.ui_tabs_callback() + interfaces += [(settings_interface, "Settings", "settings")] + + extensions_interface = ui_extensions.create_ui() + interfaces += [(extensions_interface, "Extensions", "extensions")] + + with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo: + with gr.Row(elem_id="quicksettings"): + for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])): + component = create_setting_component(k, is_quicksettings=True) + component_dict[k] = component + + parameters_copypaste.integrate_settings_paste_fields(component_dict) + parameters_copypaste.run_bind() + + with gr.Tabs(elem_id="tabs") as tabs: + for interface, label, ifid in interfaces: + with gr.TabItem(label, id=ifid, elem_id='tab_' + ifid): + interface.render() + + if os.path.exists(os.path.join(script_path, "notification.mp3")): + audio_notification = gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False) + + if os.path.exists("html/footer.html"): + with open("html/footer.html", encoding="utf8") as file: + footer = file.read() + footer = footer.format(versions=versions_html()) + gr.HTML(footer, elem_id="footer") + + text_settings = gr.Textbox(elem_id="settings_json", value=lambda: opts.dumpjson(), visible=False) + settings_submit.click( + fn=wrap_gradio_call(run_settings, extra_outputs=[gr.update()]), + inputs=components, + outputs=[text_settings, result], + ) + + for i, k, item in quicksettings_list: + component = component_dict[k] + + component.change( + fn=lambda value, k=k: run_settings_single(value, key=k), + inputs=[component], + outputs=[component, text_settings], + ) + + component_keys = [k for k in opts.data_labels.keys() if k in component_dict] + + def get_settings_values(): + return [getattr(opts, key) for key in component_keys] + + demo.load( + fn=get_settings_values, + inputs=[], + outputs=[component_dict[k] for k in component_keys], + ) + + def modelmerger(*args): + try: + results = modules.extras.run_modelmerger(*args) + except Exception as e: + print("Error loading/saving model file:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + modules.sd_models.list_models() # to remove the potentially missing models from the list + return [f"Error merging checkpoints: {e}"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)] + return results + + modelmerger_merge.click( + fn=modelmerger, + inputs=[ + primary_model_name, + secondary_model_name, + tertiary_model_name, + interp_method, + interp_amount, + save_as_half, + custom_name, + checkpoint_format, + ], + outputs=[ + submit_result, + primary_model_name, + secondary_model_name, + tertiary_model_name, + component_dict['sd_model_checkpoint'], + ] + ) + + ui_config_file = cmd_opts.ui_config_file + ui_settings = {} + settings_count = len(ui_settings) + error_loading = False + + try: + if os.path.exists(ui_config_file): + with open(ui_config_file, "r", encoding="utf8") as file: + ui_settings = json.load(file) + except Exception: + error_loading = True + print("Error loading settings:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + def loadsave(path, x): + def apply_field(obj, field, condition=None, init_field=None): + key = path + "/" + field + + if getattr(obj, 'custom_script_source', None) is not None: + key = 'customscript/' + obj.custom_script_source + '/' + key + + if getattr(obj, 'do_not_save_to_config', False): + return + + saved_value = ui_settings.get(key, None) + if saved_value is None: + ui_settings[key] = getattr(obj, field) + elif condition and not condition(saved_value): + print(f'Warning: Bad ui setting value: {key}: {saved_value}; Default value "{getattr(obj, field)}" will be used instead.') + else: + setattr(obj, field, saved_value) + if init_field is not None: + init_field(saved_value) + + if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown] and x.visible: + apply_field(x, 'visible') + + if type(x) == gr.Slider: + apply_field(x, 'value') + apply_field(x, 'minimum') + apply_field(x, 'maximum') + apply_field(x, 'step') + + if type(x) == gr.Radio: + apply_field(x, 'value', lambda val: val in x.choices) + + if type(x) == gr.Checkbox: + apply_field(x, 'value') + + if type(x) == gr.Textbox: + apply_field(x, 'value') + + if type(x) == gr.Number: + apply_field(x, 'value') + + if type(x) == gr.Dropdown: + apply_field(x, 'value', lambda val: val in x.choices, getattr(x, 'init_field', None)) + + visit(txt2img_interface, loadsave, "txt2img") + visit(img2img_interface, loadsave, "img2img") + visit(extras_interface, loadsave, "extras") + visit(modelmerger_interface, loadsave, "modelmerger") + visit(train_interface, loadsave, "train") + + if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)): + with open(ui_config_file, "w", encoding="utf8") as file: + json.dump(ui_settings, file, indent=4) + + return demo + + +def reload_javascript(): + with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile: + javascript = f'' + + scripts_list = modules.scripts.list_scripts("javascript", ".js") + + for basedir, filename, path in scripts_list: + with open(path, "r", encoding="utf8") as jsfile: + javascript += f"\n" + + if cmd_opts.theme is not None: + javascript += f"\n\n" + + javascript += f"\n" + + def template_response(*args, **kwargs): + res = shared.GradioTemplateResponseOriginal(*args, **kwargs) + res.body = res.body.replace( + b'', f'{javascript}'.encode("utf8")) + res.init_headers() + return res + + gradio.routes.templates.TemplateResponse = template_response + + +if not hasattr(shared, 'GradioTemplateResponseOriginal'): + shared.GradioTemplateResponseOriginal = gradio.routes.templates.TemplateResponse + + +def versions_html(): + import torch + import launch + + python_version = ".".join([str(x) for x in sys.version_info[0:3]]) + commit = launch.commit_hash() + short_commit = commit[0:8] + + if shared.xformers_available: + import xformers + xformers_version = xformers.__version__ + else: + xformers_version = "N/A" + + return f""" +python: {python_version} + •  +torch: {torch.__version__} + •  +xformers: {xformers_version} + •  +gradio: {gr.__version__} + •  +commit: {short_commit} +"""