diff --git a/modules/processing.py b/modules/processing.py index 92bf66f24..e777a9651 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -19,6 +19,14 @@ import modules.face_restoration import modules.images as images import modules.styles +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from transformers import AutoFeatureExtractor + +# load safety model +safety_model_id = "CompVis/stable-diffusion-safety-checker" +safety_feature_extractor = None +safety_checker = None + # some of those options should not be changed at all because they would break the model, so I removed them from options. opt_C = 4 opt_f = 8 @@ -146,6 +154,28 @@ def fix_seed(p): p.subseed = int(random.randrange(4294967294)) if p.subseed is None or p.subseed == -1 else p.subseed +def numpy_to_pil(images): + """ + Convert a numpy image or a batch of images to a PIL image. + """ + if images.ndim == 3: + images = images[None, ...] + images = (images * 255).round().astype("uint8") + pil_images = [Image.fromarray(image) for image in images] + + return pil_images + +# check and replace nsfw content +def check_safety(x_image): + global safety_feature_extractor, safety_checker + if safety_feature_extractor is None: + safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) + safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) + safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") + x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) + return x_checked_image, has_nsfw_concept + + def process_images(p: StableDiffusionProcessing) -> Processed: """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" @@ -248,6 +278,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed: x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) + if opts.filter_nsfw: + x_samples_ddim_numpy = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() + x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim_numpy) + x_samples_ddim = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) + for i, x_sample in enumerate(x_samples_ddim): x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) diff --git a/modules/shared.py b/modules/shared.py index 891d7fb25..37c333f3f 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -111,6 +111,7 @@ class Options: "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs), "samples_save": OptionInfo(True, "Save indiviual samples"), "samples_format": OptionInfo('png', 'File format for individual samples'), + "filter_nsfw": OptionInfo(False, "Filter NSFW content"), "grid_save": OptionInfo(True, "Save image grids"), "return_grid": OptionInfo(True, "Show grid in results for web"), "grid_format": OptionInfo('png', 'File format for grids'),