from modules import shared from modules.sd_hijack_utils import CondFunc has_ipex = False try: import torch import intel_extension_for_pytorch as ipex # noqa: F401 has_ipex = True except Exception: pass def check_for_xpu(): return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available() def get_xpu_device_string(): if shared.cmd_opts.device_id is not None: return f"xpu:{shared.cmd_opts.device_id}" return "xpu" def torch_xpu_gc(): with torch.xpu.device(get_xpu_device_string()): torch.xpu.empty_cache() has_xpu = check_for_xpu() if has_xpu: # W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device CondFunc('torch.Generator', lambda orig_func, device=None: torch.xpu.Generator(device), lambda orig_func, device=None: device is not None and device.type == "xpu") # W/A for some OPs that could not handle different input dtypes CondFunc('torch.nn.functional.layer_norm', lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs), lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight is not None and input.dtype != weight.data.dtype) CondFunc('torch.nn.modules.GroupNorm.forward', lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: input.dtype != self.weight.data.dtype) CondFunc('torch.nn.modules.linear.Linear.forward', lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: input.dtype != self.weight.data.dtype) CondFunc('torch.nn.modules.conv.Conv2d.forward', lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: input.dtype != self.weight.data.dtype) CondFunc('torch.bmm', lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out), lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype) CondFunc('torch.cat', lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out), lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors)) CondFunc('torch.nn.functional.scaled_dot_product_attention', lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: orig_func(query, key.to(query.dtype), value.to(query.dtype), attn_mask, dropout_p, is_causal), lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: query.dtype != key.dtype or query.dtype != value.dtype)