import html import os import re import gradio as gr import modules.textual_inversion.preprocess import modules.textual_inversion.textual_inversion from modules import devices, sd_hijack, shared from modules.hypernetworks import hypernetwork not_available = ["hardswish", "multiheadattention"] keys = list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available) def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False): # Remove illegal characters from name. name = "".join( x for x in name if (x.isalnum() or x in "._- ")) fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") if not overwrite_old: assert not os.path.exists(fn), f"file {fn} already exists" if type(layer_structure) == str: layer_structure = [float(x.strip()) for x in layer_structure.split(",")] hypernet = modules.hypernetworks.hypernetwork.Hypernetwork( name=name, enable_sizes=[int(x) for x in enable_sizes], layer_structure=layer_structure, activation_func=activation_func, weight_init=weight_init, add_layer_norm=add_layer_norm, use_dropout=use_dropout, ) hypernet.save(fn) shared.reload_hypernetworks() return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" def train_hypernetwork(*args): initial_hypernetwork = shared.loaded_hypernetwork assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible' try: sd_hijack.undo_optimizations() hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args) res = f""" Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps. Hypernetwork saved to {html.escape(filename)} """ return res, "" except Exception: raise finally: shared.loaded_hypernetwork = initial_hypernetwork shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device) sd_hijack.apply_optimizations()