import math import sys import traceback import importlib import torch from torch import einsum import torch.nn.functional as F from ldm.util import default from einops import rearrange from modules import shared from modules.hypernetworks import hypernetwork from ldm.modules.diffusionmodules.util import timestep_embedding if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: try: import xformers.ops shared.xformers_available = True except Exception: print("Cannot import xformers", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion def split_cross_attention_forward_v1(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) k_in = self.to_k(context_k) v_in = self.to_v(context_v) del context, context_k, context_v, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) for i in range(0, q.shape[0], 2): end = i + 2 s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) s1 *= self.scale s2 = s1.softmax(dim=-1) del s1 r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) del s2 del q, k, v r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) del r1 return self.to_out(r2) # taken from https://github.com/Doggettx/stable-diffusion and modified def split_cross_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) k_in = self.to_k(context_k) v_in = self.to_v(context_v) k_in *= self.scale del context, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) stats = torch.cuda.memory_stats(q.device) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch gb = 1024 ** 3 tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() modifier = 3 if q.element_size() == 2 else 2.5 mem_required = tensor_size * modifier steps = 1 if mem_required > mem_free_total: steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") if steps > 64: max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = i + slice_size s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) s2 = s1.softmax(dim=-1, dtype=q.dtype) del s1 r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) del s2 del q, k, v r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) del r1 return self.to_out(r2) def check_for_psutil(): try: spec = importlib.util.find_spec('psutil') return spec is not None except ModuleNotFoundError: return False invokeAI_mps_available = check_for_psutil() # -- Taken from https://github.com/invoke-ai/InvokeAI -- if invokeAI_mps_available: import psutil mem_total_gb = psutil.virtual_memory().total // (1 << 30) def einsum_op_compvis(q, k, v): s = einsum('b i d, b j d -> b i j', q, k) s = s.softmax(dim=-1, dtype=s.dtype) return einsum('b i j, b j d -> b i d', s, v) def einsum_op_slice_0(q, k, v, slice_size): r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) for i in range(0, q.shape[0], slice_size): end = i + slice_size r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end]) return r def einsum_op_slice_1(q, k, v, slice_size): r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) for i in range(0, q.shape[1], slice_size): end = i + slice_size r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v) return r def einsum_op_mps_v1(q, k, v): if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096 return einsum_op_compvis(q, k, v) else: slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1])) return einsum_op_slice_1(q, k, v, slice_size) def einsum_op_mps_v2(q, k, v): if mem_total_gb > 8 and q.shape[1] <= 4096: return einsum_op_compvis(q, k, v) else: return einsum_op_slice_0(q, k, v, 1) def einsum_op_tensor_mem(q, k, v, max_tensor_mb): size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20) if size_mb <= max_tensor_mb: return einsum_op_compvis(q, k, v) div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length() if div <= q.shape[0]: return einsum_op_slice_0(q, k, v, q.shape[0] // div) return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1)) def einsum_op_cuda(q, k, v): stats = torch.cuda.memory_stats(q.device) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(q.device) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch # Divide factor of safety as there's copying and fragmentation return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) def einsum_op(q, k, v): if q.device.type == 'cuda': return einsum_op_cuda(q, k, v) if q.device.type == 'mps': if mem_total_gb >= 32: return einsum_op_mps_v1(q, k, v) return einsum_op_mps_v2(q, k, v) # Smaller slices are faster due to L2/L3/SLC caches. # Tested on i7 with 8MB L3 cache. return einsum_op_tensor_mem(q, k, v, 32) def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) k = self.to_k(context_k) * self.scale v = self.to_v(context_v) del context, context_k, context_v, x q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) r = einsum_op(q, k, v) return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h)) # -- End of code from https://github.com/invoke-ai/InvokeAI -- def xformers_attention_forward(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = default(context, x) context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context) k_in = self.to_k(context_k) v_in = self.to_v(context_v) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) out = rearrange(out, 'b n h d -> b n (h d)', h=h) return self.to_out(out) def cross_attention_attnblock_forward(self, x): h_ = x h_ = self.norm(h_) q1 = self.q(h_) k1 = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q1.shape q2 = q1.reshape(b, c, h*w) del q1 q = q2.permute(0, 2, 1) # b,hw,c del q2 k = k1.reshape(b, c, h*w) # b,c,hw del k1 h_ = torch.zeros_like(k, device=q.device) stats = torch.cuda.memory_stats(q.device) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() mem_required = tensor_size * 2.5 steps = 1 if mem_required > mem_free_total: steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] for i in range(0, q.shape[1], slice_size): end = i + slice_size w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w2 = w1 * (int(c)**(-0.5)) del w1 w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) del w2 # attend to values v1 = v.reshape(b, c, h*w) w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) del w3 h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] del v1, w4 h2 = h_.reshape(b, c, h, w) del h_ h3 = self.proj_out(h2) del h2 h3 += x return h3 def xformers_attnblock_forward(self, x): try: h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) q = q.contiguous() k = k.contiguous() v = v.contiguous() out = xformers.ops.memory_efficient_attention(q, k, v) out = rearrange(out, 'b (h w) c -> b c h w', h=h) out = self.proj_out(out) return x + out except NotImplementedError: return cross_attention_attnblock_forward(self, x) def patched_unet_forward(self, x, timesteps=None, context=None, y=None,**kwargs): assert (y is not None) == ( self.num_classes is not None ), "must specify y if and only if the model is class-conditional" hs = [] t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) if self.num_classes is not None: assert y.shape == (x.shape[0],) emb = emb + self.label_emb(y) h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb, context) hs.append(h) h = self.middle_block(h, emb, context) for module in self.output_blocks: if h.shape[-2:] != hs[-1].shape[-2:]: h = F.interpolate(h, hs[-1].shape[-2:], mode="nearest") h = torch.cat([h, hs.pop()], dim=1) h = module(h, emb, context) h = h.type(x.dtype) if self.predict_codebook_ids: return self.id_predictor(h) else: return self.out(h)