import sys import traceback import cv2 import os import contextlib import numpy as np from PIL import Image import torch import modules.images from modules.shared import cmd_opts, opts, device from modules.swinir_arch import SwinIR as net precision_scope = ( torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext ) def load_model(filename, scale=4): model = net( upscale=scale, in_chans=3, img_size=64, window_size=8, img_range=1.0, depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], mlp_ratio=2, upsampler="nearest+conv", resi_connection="3conv", ) pretrained_model = torch.load(filename) model.load_state_dict(pretrained_model["params_ema"], strict=True) if not cmd_opts.no_half: model = model.half() return model def load_models(dirname): for file in os.listdir(dirname): path = os.path.join(dirname, file) model_name, extension = os.path.splitext(file) if extension != ".pt" and extension != ".pth": continue try: modules.shared.sd_upscalers.append(UpscalerSwin(path, model_name)) except Exception: print(f"Error loading SwinIR model: {path}", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) def upscale( img, model, tile=opts.GAN_tile, tile_overlap=opts.GAN_tile_overlap, window_size=8, scale=4, ): img = np.array(img) img = img[:, :, ::-1] img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() img = img.unsqueeze(0).to(device) with torch.no_grad(), precision_scope("cuda"): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] output = inference(img, model, tile, tile_overlap, window_size, scale) output = output[..., : h_old * scale, : w_old * scale] output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose( output[[2, 1, 0], :, :], (1, 2, 0) ) # CHW-RGB to HCW-BGR output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 return Image.fromarray(output, "RGB") def inference(img, model, tile, tile_overlap, window_size, scale): # test the image tile by tile b, c, h, w = img.size() tile = min(tile, h, w) assert tile % window_size == 0, "tile size should be a multiple of window_size" sf = scale stride = tile - tile_overlap h_idx_list = list(range(0, h - tile, stride)) + [h - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile] E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) W = torch.zeros_like(E, dtype=torch.half, device=device) for h_idx in h_idx_list: for w_idx in w_idx_list: in_patch = img[..., h_idx : h_idx + tile, w_idx : w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) E[ ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf ].add_(out_patch) W[ ..., h_idx * sf : (h_idx + tile) * sf, w_idx * sf : (w_idx + tile) * sf ].add_(out_patch_mask) output = E.div_(W) return output class UpscalerSwin(modules.images.Upscaler): def __init__(self, filename, title): self.name = title self.model = load_model(filename) def do_upscale(self, img): model = self.model.to(device) img = upscale(img, model) return img