import torch import network from einops import rearrange class ModuleTypeOFT(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["oft_blocks"]): return NetworkModuleOFT(net, weights) return None # adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.oft_blocks = weights.w["oft_blocks"] self.alpha = weights.w["alpha"] self.dim = self.oft_blocks.shape[0] self.num_blocks = self.dim if "Linear" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_features elif "Conv" in self.sd_module.__class__.__name__: self.out_dim = self.sd_module.out_channels self.constraint = self.alpha * self.out_dim self.block_size = self.out_dim // self.num_blocks self.org_module: list[torch.Module] = [self.sd_module] # def merge_weight(self, R_weight, org_weight): # R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype) # if org_weight.dim() == 4: # weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight) # else: # weight = torch.einsum("oi, op -> pi", org_weight, R_weight) # weight = torch.einsum( # "k n m, k n ... -> k m ...", # self.oft_diag * scale + torch.eye(self.block_size, device=device), # org_weight # ) # return weight def get_weight(self, oft_blocks, multiplier=None): # constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) # block_Q = oft_blocks - oft_blocks.transpose(1, 2) # norm_Q = torch.norm(block_Q.flatten()) # new_norm_Q = torch.clamp(norm_Q, max=constraint) # block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) # m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) # block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) # block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I # R = torch.block_diag(*block_R_weighted) #return R return self.oft_blocks def calc_updown(self, orig_weight): multiplier = self.multiplier() * self.calc_scale() #R = self.get_weight(self.oft_blocks, multiplier) R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) #merged_weight = self.merge_weight(R, orig_weight) orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) weight = torch.einsum( 'k n m, k n ... -> k m ...', R * multiplier + torch.eye(self.block_size, device=orig_weight.device), orig_weight ) weight = rearrange(weight, 'k m ... -> (k m) ...') #updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight output_shape = orig_weight.shape orig_weight = orig_weight return self.finalize_updown(updown, orig_weight, output_shape) # override to remove the multiplier/scale factor; it's already multiplied in get_weight def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): #return super().finalize_updown(updown, orig_weight, output_shape, ex_bias) if self.bias is not None: updown = updown.reshape(self.bias.shape) updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) updown = updown.reshape(output_shape) if len(output_shape) == 4: updown = updown.reshape(output_shape) if orig_weight.size().numel() == updown.size().numel(): updown = updown.reshape(orig_weight.shape) if ex_bias is not None: ex_bias = ex_bias * self.multiplier() return updown, ex_bias