"
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
del x
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
mean_loss = losses.mean()
if torch.isnan(mean_loss):
raise RuntimeError("Loss diverged.")
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}",
"learn_rate": scheduler.learn_rate
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
)
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_index = preview_sampler_index
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = entries[0].cond_text
p.steps = 20
preview_text = p.prompt
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images)>0 else None
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
if image is not None:
shared.state.current_image = image
image.save(last_saved_image)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
hypernetwork.save(filename)
return hypernetwork, filename