import threading import time from collections import defaultdict import torch class MemUsageMonitor(threading.Thread): run_flag = None device = None disabled = False opts = None data = None def __init__(self, name, device, opts): threading.Thread.__init__(self) self.name = name self.device = device self.opts = opts self.daemon = True self.run_flag = threading.Event() self.data = defaultdict(int) def run(self): if self.disabled: return while True: self.run_flag.wait() torch.cuda.reset_peak_memory_stats() self.data.clear() if self.opts.memmon_poll_rate <= 0: self.run_flag.clear() continue self.data["min_free"] = torch.cuda.mem_get_info()[0] while self.run_flag.is_set(): free, total = torch.cuda.mem_get_info() # calling with self.device errors, torch bug? self.data["min_free"] = min(self.data["min_free"], free) time.sleep(1 / self.opts.memmon_poll_rate) def dump_debug(self): print(self, 'recorded data:') for k, v in self.read().items(): print(k, -(v // -(1024 ** 2))) print(self, 'raw torch memory stats:') tm = torch.cuda.memory_stats(self.device) for k, v in tm.items(): if 'bytes' not in k: continue print('\t' if 'peak' in k else '', k, -(v // -(1024 ** 2))) print(torch.cuda.memory_summary()) def monitor(self): self.run_flag.set() def read(self): free, total = torch.cuda.mem_get_info() self.data["total"] = total torch_stats = torch.cuda.memory_stats(self.device) self.data["active_peak"] = torch_stats["active_bytes.all.peak"] self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"] self.data["system_peak"] = total - self.data["min_free"] return self.data def stop(self): self.run_flag.clear() return self.read()