import os import cv2 import torch import modules.face_restoration import modules.shared from modules import shared, devices, modelloader, errors from modules.paths import models_path model_dir = "Codeformer" model_path = os.path.join(models_path, model_dir) model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' codeformer = None class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): def name(self): return "CodeFormer" def __init__(self, dirname): self.net = None self.face_helper = None self.cmd_dir = dirname def create_models(self): from facexlib.detection import retinaface from facexlib.utils.face_restoration_helper import FaceRestoreHelper if self.net is not None and self.face_helper is not None: self.net.to(devices.device_codeformer) return self.net, self.face_helper model_paths = modelloader.load_models( model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth'], ) if len(model_paths) != 0: ckpt_path = model_paths[0] else: print("Unable to load codeformer model.") return None, None net = modelloader.load_spandrel_model(ckpt_path, device=devices.device_codeformer) if hasattr(retinaface, 'device'): retinaface.device = devices.device_codeformer face_helper = FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer, ) self.net = net self.face_helper = face_helper def send_model_to(self, device): self.net.to(device) self.face_helper.face_det.to(device) self.face_helper.face_parse.to(device) def restore(self, np_image, w=None): from torchvision.transforms.functional import normalize from basicsr.utils import img2tensor, tensor2img np_image = np_image[:, :, ::-1] original_resolution = np_image.shape[0:2] self.create_models() if self.net is None or self.face_helper is None: return np_image self.send_model_to(devices.device_codeformer) self.face_helper.clean_all() self.face_helper.read_image(np_image) self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() for cropped_face in self.face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) try: with torch.no_grad(): res = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True) if isinstance(res, tuple): output = res[0] else: output = res if not isinstance(res, torch.Tensor): raise TypeError(f"Expected torch.Tensor, got {type(res)}") restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output devices.torch_gc() except Exception: errors.report('Failed inference for CodeFormer', exc_info=True) restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') self.face_helper.add_restored_face(restored_face) self.face_helper.get_inverse_affine(None) restored_img = self.face_helper.paste_faces_to_input_image() restored_img = restored_img[:, :, ::-1] if original_resolution != restored_img.shape[0:2]: restored_img = cv2.resize( restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR, ) self.face_helper.clean_all() if shared.opts.face_restoration_unload: self.send_model_to(devices.cpu) return restored_img def setup_model(dirname): os.makedirs(model_path, exist_ok=True) try: global codeformer codeformer = FaceRestorerCodeFormer(dirname) shared.face_restorers.append(codeformer) except Exception: errors.report("Error setting up CodeFormer", exc_info=True)