import torch import os from collections import namedtuple from modules import shared, devices from modules.paths import models_path import glob model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) vae_dir = "VAE" vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} default_vae_dict = {"auto": "auto", "None": "None"} default_vae_list = ["auto", "None"] default_vae_values = [default_vae_dict[x] for x in default_vae_list] vae_dict = dict(default_vae_dict) vae_list = list(default_vae_list) first_load = True def get_filename(filepath): return os.path.splitext(os.path.basename(filepath))[0] def refresh_vae_list(vae_path=vae_path, model_path=model_path): global vae_dict, vae_list res = {} candidates = [ *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True), *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True) ] if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): candidates.append(shared.cmd_opts.vae_path) for filepath in candidates: name = get_filename(filepath) res[name] = filepath vae_list.clear() vae_list.extend(default_vae_list) vae_list.extend(list(res.keys())) vae_dict.clear() vae_dict.update(default_vae_dict) vae_dict.update(res) return vae_list def load_vae(model, checkpoint_file, vae_file="auto"): global first_load, vae_dict, vae_list # save_settings = False # if vae_file argument is provided, it takes priority if vae_file and vae_file not in default_vae_list: if not os.path.isfile(vae_file): vae_file = "auto" # save_settings = True print("VAE provided as function argument doesn't exist") # for the first load, if vae-path is provided, it takes priority and failure is reported if first_load and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path # save_settings = True # print("Using VAE provided as command line argument") else: print("VAE provided as command line argument doesn't exist") # else, we load from settings if vae_file == "auto" and shared.opts.sd_vae is not None: # if saved VAE settings isn't recognized, fallback to auto vae_file = vae_dict.get(shared.opts.sd_vae, "auto") # if VAE selected but not found, fallback to auto if vae_file not in default_vae_values and not os.path.isfile(vae_file): vae_file = "auto" print("Selected VAE doesn't exist") # vae-path cmd arg takes priority for auto if vae_file == "auto" and shared.cmd_opts.vae_path is not None: if os.path.isfile(shared.cmd_opts.vae_path): vae_file = shared.cmd_opts.vae_path print("Using VAE provided as command line argument") # if still not found, try look for ".vae.pt" beside model model_path = os.path.splitext(checkpoint_file)[0] if vae_file == "auto": vae_file_try = model_path + ".vae.pt" if os.path.isfile(vae_file_try): vae_file = vae_file_try print("Using VAE found beside selected model") # if still not found, try look for ".vae.ckpt" beside model if vae_file == "auto": vae_file_try = model_path + ".vae.ckpt" if os.path.isfile(vae_file_try): vae_file = vae_file_try print("Using VAE found beside selected model") # No more fallbacks for auto if vae_file == "auto": vae_file = None # Last check, just because if vae_file and not os.path.exists(vae_file): vae_file = None if vae_file: print(f"Loading VAE weights from: {vae_file}") vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} model.first_stage_model.load_state_dict(vae_dict_1) # If vae used is not in dict, update it # It will be removed on refresh though if vae_file is not None: vae_opt = get_filename(vae_file) if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) """ # Save current VAE to VAE settings, maybe? will it work? if save_settings: if vae_file is None: vae_opt = "None" # shared.opts.sd_vae = vae_opt """ first_load = False model.first_stage_model.to(devices.dtype_vae)