import torch import network from lyco_helpers import factorization from einops import rearrange class ModuleTypeOFT(network.ModuleType): def create_module(self, net: network.Network, weights: network.NetworkWeights): if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): return NetworkModuleOFT(net, weights) return None # Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py # and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py class NetworkModuleOFT(network.NetworkModule): def __init__(self, net: network.Network, weights: network.NetworkWeights): super().__init__(net, weights) self.lin_module = None self.org_module: list[torch.Module] = [self.sd_module] # kohya-ss if "oft_blocks" in weights.w.keys(): self.is_kohya = True self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) self.alpha = weights.w["alpha"] # alpha is constraint self.dim = self.oft_blocks.shape[0] # lora dim # LyCORIS elif "oft_diag" in weights.w.keys(): self.is_kohya = False self.oft_blocks = weights.w["oft_diag"] # self.alpha is unused self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] is_conv = type(self.sd_module) in [torch.nn.Conv2d] is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported if is_linear: self.out_dim = self.sd_module.out_features elif is_conv: self.out_dim = self.sd_module.out_channels elif is_other_linear: self.out_dim = self.sd_module.embed_dim if self.is_kohya: self.constraint = self.alpha * self.out_dim self.num_blocks = self.dim self.block_size = self.out_dim // self.dim else: self.constraint = None self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) def calc_updown_kb(self, orig_weight, multiplier): oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device) # This errors out for MultiheadAttention, might need to be handled up-stream merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) merged_weight = torch.einsum( 'k n m, k n ... -> k m ...', R, merged_weight ) merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight output_shape = orig_weight.shape return self.finalize_updown(updown, orig_weight, output_shape) def calc_updown(self, orig_weight): # if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it multiplier = self.multiplier() return self.calc_updown_kb(orig_weight, multiplier) # override to remove the multiplier/scale factor; it's already multiplied in get_weight def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): if self.bias is not None: updown = updown.reshape(self.bias.shape) updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) updown = updown.reshape(output_shape) if len(output_shape) == 4: updown = updown.reshape(output_shape) if orig_weight.size().numel() == updown.size().numel(): updown = updown.reshape(orig_weight.shape) if ex_bias is not None: ex_bias = ex_bias * self.multiplier() return updown, ex_bias