stable-diffusion-webui/modules/txt2img.py
2024-01-04 19:47:00 +03:00

94 lines
3.7 KiB
Python

import json
from contextlib import closing
import modules.scripts
from modules import processing, infotext_utils
from modules.infotext_utils import create_override_settings_dict
from modules.shared import opts
import modules.shared as shared
from modules.ui import plaintext_to_html
import gradio as gr
def txt2img_upscale(id_task: str, request: gr.Request, gallery, gallery_index, generation_info, *args):
assert len(gallery) > 0, 'No image to upscale'
assert 0 <= gallery_index < len(gallery), f'Bad image index: {gallery_index}'
geninfo = json.loads(generation_info)
all_seeds = geninfo["all_seeds"]
image_info = gallery[gallery_index] if 0 <= gallery_index < len(gallery) else gallery[0]
image = infotext_utils.image_from_url_text(image_info)
gallery_index_from_end = len(gallery) - gallery_index
image.seed = all_seeds[-gallery_index_from_end if gallery_index_from_end < len(all_seeds) + 1 else 0]
return txt2img(id_task, request, *args, firstpass_image=image)
def txt2img(id_task: str, request: gr.Request, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_name: str, n_iter: int, batch_size: int, cfg_scale: float, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, *args, firstpass_image=None):
override_settings = create_override_settings_dict(override_settings_texts)
if firstpass_image is not None:
seed = getattr(firstpass_image, 'seed', None)
if seed:
args = modules.scripts.scripts_txt2img.set_named_arg(args, 'ScriptSeed', 'seed', seed)
enable_hr = True
batch_size = 1
n_iter = 1
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_txt2img_grids,
prompt=prompt,
styles=prompt_styles,
negative_prompt=negative_prompt,
sampler_name=sampler_name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
enable_hr=enable_hr,
denoising_strength=denoising_strength if enable_hr else None,
hr_scale=hr_scale,
hr_upscaler=hr_upscaler,
hr_second_pass_steps=hr_second_pass_steps,
hr_resize_x=hr_resize_x,
hr_resize_y=hr_resize_y,
hr_checkpoint_name=None if hr_checkpoint_name == 'Use same checkpoint' else hr_checkpoint_name,
hr_sampler_name=None if hr_sampler_name == 'Use same sampler' else hr_sampler_name,
hr_prompt=hr_prompt,
hr_negative_prompt=hr_negative_prompt,
override_settings=override_settings,
firstpass_image=firstpass_image,
)
p.scripts = modules.scripts.scripts_txt2img
p.script_args = args
p.user = request.username
if shared.opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
with closing(p):
processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None:
processed = processing.process_images(p)
shared.total_tqdm.clear()
generation_info_js = processed.js()
if opts.samples_log_stdout:
print(generation_info_js)
if opts.do_not_show_images:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")