stable-diffusion-webui/modules/hypernetwork/hypernetwork.py
2022-10-07 23:22:22 +03:00

268 lines
8.5 KiB
Python

import datetime
import glob
import html
import os
import sys
import traceback
import tqdm
import torch
from ldm.util import default
from modules import devices, shared, processing, sd_models
import torch
from torch import einsum
from einops import rearrange, repeat
import modules.textual_inversion.dataset
class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict=None):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim * 2)
self.linear2 = torch.nn.Linear(dim * 2, dim)
if state_dict is not None:
self.load_state_dict(state_dict, strict=True)
else:
self.linear1.weight.data.fill_(0.0001)
self.linear1.bias.data.fill_(0.0001)
self.linear2.weight.data.fill_(0.0001)
self.linear2.bias.data.fill_(0.0001)
self.to(devices.device)
def forward(self, x):
return x + (self.linear2(self.linear1(x)))
class Hypernetwork:
filename = None
name = None
def __init__(self, name=None):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
for size in [320, 640, 768, 1280]:
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
def weights(self):
res = []
for k, layers in self.layers.items():
for layer in layers:
layer.train()
res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
return res
def save(self, filename):
state_dict = {}
for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
torch.save(state_dict, filename)
def load(self, filename):
self.filename = filename
if self.name is None:
self.name = os.path.splitext(os.path.basename(filename))[0]
state_dict = torch.load(filename, map_location='cpu')
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
def load_hypernetworks(path):
res = {}
for filename in glob.iglob(path + '**/*.pt', recursive=True):
try:
hn = Hypernetwork()
hn.load(filename)
res[hn.name] = hn
except Exception:
print(f"Error loading hypernetwork {filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return res
def attention_CrossAttention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is not None:
hypernetwork_k, hypernetwork_v = hypernetwork_layers
self.hypernetwork_k = hypernetwork_k
self.hypernetwork_v = hypernetwork_v
context_k = hypernetwork_k(context)
context_v = hypernetwork_v(context)
else:
context_k = context
context_v = context
k = self.to_k(context_k)
v = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
assert hypernetwork_name, 'embedding not selected'
shared.hypernetwork = shared.hypernetworks[hypernetwork_name]
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
if save_hypernetwork_every > 0:
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
os.makedirs(hypernetwork_dir, exist_ok=True)
else:
hypernetwork_dir = None
if create_image_every > 0:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
else:
images_dir = None
cond_model = shared.sd_model.cond_stage_model
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
hypernetwork = shared.hypernetworks[hypernetwork_name]
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
losses = torch.zeros((32,))
last_saved_file = "<none>"
last_saved_image = "<none>"
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
return hypernetwork, filename
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, (x, text) in pbar:
hypernetwork.step = i + ititial_step
if hypernetwork.step > steps:
break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
c = cond_model([text])
x = x.to(devices.device)
loss = shared.sd_model(x.unsqueeze(0), c)[0]
del x
losses[hypernetwork.step % losses.shape[0]] = loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_description(f"loss: {losses.mean():.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
hypernetwork.save(last_saved_file)
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
preview_text = text if preview_image_prompt == "" else preview_image_prompt
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
prompt=preview_text,
steps=20,
do_not_save_grid=True,
do_not_save_samples=True,
)
processed = processing.process_images(p)
image = processed.images[0]
shared.state.current_image = image
image.save(last_saved_image)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
<p>
Loss: {losses.mean():.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(text)}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
hypernetwork.save(filename)
return hypernetwork, filename