Update for 05-11-21 14:15
This commit is contained in:
parent
632d0db79f
commit
09bec29cb2
1
math/euclidean_algorithm.wiki
Normal file
1
math/euclidean_algorithm.wiki
Normal file
@ -0,0 +1 @@
|
|||||||
|
= Euclidean Algorithm =
|
@ -10,4 +10,5 @@ The purest study of them all
|
|||||||
|
|
||||||
* [[prime]]
|
* [[prime]]
|
||||||
* [[relative_prime]]
|
* [[relative_prime]]
|
||||||
*
|
* [[modular_inverse]]
|
||||||
|
* [[euclidean_algorithm]]
|
||||||
|
26
math/modular_inverse.wiki
Normal file
26
math/modular_inverse.wiki
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
= Modular Inverse =
|
||||||
|
|
||||||
|
A modular inverse is an _x_ such that satisfies the equation of form
|
||||||
|
|
||||||
|
A * x = (mod m)
|
||||||
|
|
||||||
|
This is derived from a statement in form
|
||||||
|
|
||||||
|
A^-1 (mod m)
|
||||||
|
|
||||||
|
This is due to the nature of modular operations, and can be shown via the
|
||||||
|
following set of steps.
|
||||||
|
|
||||||
|
A^-1 = 1/A
|
||||||
|
|
||||||
|
A * x = 1
|
||||||
|
|
||||||
|
x = 1/A
|
||||||
|
|
||||||
|
Therefore, via substiution
|
||||||
|
|
||||||
|
A * x = (mod m)
|
||||||
|
|
||||||
|
This means that x will be the inverse of A
|
||||||
|
|
||||||
|
To solve this, see the [[euclidean_algorithm]]
|
Loading…
Reference in New Issue
Block a user