* feat(intel): add diffusers support
* try to consume upstream container image
* Debug
* Manually install deps
* Map transformers/hf cache dir to modelpath if not specified
* fix(compel): update initialization, pass by all gRPC options
* fix: add dependencies, implement transformers for xpu
* base it from the oneapi image
* Add pillow
* set threads if specified when launching the API
* Skip conda install if intel
* defaults to non-intel
* ci: add to pipelines
* prepare compel only if enabled
* Skip conda install if intel
* fix cleanup
* Disable compel by default
* Install torch 2.1.0 with Intel
* Skip conda on some setups
* Detect python
* Quiet output
* Do not override system python with conda
* Prefer python3
* Fixups
* exllama2: do not install without conda (overrides pytorch version)
* exllama/exllama2: do not install if not using cuda
* Add missing dataset dependency
* Small fixups, symlink to python, add requirements
* Add neural_speed to the deps
* correctly handle model offloading
* fix: device_map == xpu
* go back at calling python, fixed at dockerfile level
* Exllama2 restricted to only nvidia gpus
* Tokenizer to xpu
* core 1
* api/openai/files fix
* core 2 - core/config
* move over core api.go and tests to the start of core/http
* move over localai specific endpoints to core/http, begin the service/endpoint split there
* refactor big chunk on the plane
* refactor chunk 2 on plane, next step: port and modify changes to request.go
* easy fixes for request.go, major changes not done yet
* lintfix
* json tag lintfix?
* gitignore and .keep files
* strange fix attempt: rename the config dir?
This PR specifically introduces a `core` folder and moves the following packages over, without any other changes:
- `api/backend`
- `api/config`
- `api/options`
- `api/schema`
Once this is merged and we confirm there's no regressions, I can migrate over the remaining changes piece by piece to split up application startup, backend services, http, and mqtt as was the goal of the earlier PRs!