mirror of
https://github.com/mudler/LocalAI.git
synced 2024-06-07 19:40:48 +00:00
09e5d9007b
* move downloader out * separate startup functions for preloading configuration files * docs: add popular model examples Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * shorteners * Add llava * Add mistral-openorca * Better link to build section * docs: update * fixup * Drop code dups * Minor fixups * Apply suggestions from code review Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com> * ci: try to cache gRPC build during tests Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * ci: do not build all images for tests, just necessary * ci: cache gRPC also in release pipeline * fixes * Update model_preload_test.go Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io> Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
108 lines
4.0 KiB
Markdown
108 lines
4.0 KiB
Markdown
|
|
+++
|
|
disableToc = false
|
|
title = "⚡ GPU acceleration"
|
|
weight = 2
|
|
+++
|
|
|
|
{{% notice note %}}
|
|
Section under construction
|
|
{{% /notice %}}
|
|
|
|
This section contains instruction on how to use LocalAI with GPU acceleration.
|
|
|
|
{{% notice note %}}
|
|
For accelleration for AMD or Metal HW there are no specific container images, see the [build]({{%relref "build/#acceleration" %}})
|
|
{{% /notice %}}
|
|
|
|
### CUDA(NVIDIA) acceleration
|
|
|
|
Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))
|
|
|
|
To check what CUDA version do you need, you can either run `nvidia-smi` or `nvcc --version`.
|
|
|
|
Alternatively, you can also check nvidia-smi with docker:
|
|
|
|
```
|
|
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
|
|
```
|
|
|
|
To use CUDA, use the images with the `cublas` tag, for example.
|
|
|
|
The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):
|
|
|
|
- CUDA `11` tags: `master-cublas-cuda11`, `v1.40.0-cublas-cuda11`, ...
|
|
- CUDA `12` tags: `master-cublas-cuda12`, `v1.40.0-cublas-cuda12`, ...
|
|
- CUDA `11` + FFmpeg tags: `master-cublas-cuda11-ffmpeg`, `v1.40.0-cublas-cuda11-ffmpeg`, ...
|
|
- CUDA `12` + FFmpeg tags: `master-cublas-cuda12-ffmpeg`, `v1.40.0-cublas-cuda12-ffmpeg`, ...
|
|
|
|
In addition to the commands to run LocalAI normally, you need to specify `--gpus all` to docker, for example:
|
|
|
|
```bash
|
|
docker run --rm -ti --gpus all -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12
|
|
```
|
|
|
|
If the GPU inferencing is working, you should be able to see something like:
|
|
|
|
```
|
|
5:22PM DBG Loading model in memory from file: /models/open-llama-7b-q4_0.bin
|
|
ggml_init_cublas: found 1 CUDA devices:
|
|
Device 0: Tesla T4
|
|
llama.cpp: loading model from /models/open-llama-7b-q4_0.bin
|
|
llama_model_load_internal: format = ggjt v3 (latest)
|
|
llama_model_load_internal: n_vocab = 32000
|
|
llama_model_load_internal: n_ctx = 1024
|
|
llama_model_load_internal: n_embd = 4096
|
|
llama_model_load_internal: n_mult = 256
|
|
llama_model_load_internal: n_head = 32
|
|
llama_model_load_internal: n_layer = 32
|
|
llama_model_load_internal: n_rot = 128
|
|
llama_model_load_internal: ftype = 2 (mostly Q4_0)
|
|
llama_model_load_internal: n_ff = 11008
|
|
llama_model_load_internal: n_parts = 1
|
|
llama_model_load_internal: model size = 7B
|
|
llama_model_load_internal: ggml ctx size = 0.07 MB
|
|
llama_model_load_internal: using CUDA for GPU acceleration
|
|
llama_model_load_internal: mem required = 4321.77 MB (+ 1026.00 MB per state)
|
|
llama_model_load_internal: allocating batch_size x 1 MB = 512 MB VRAM for the scratch buffer
|
|
llama_model_load_internal: offloading 10 repeating layers to GPU
|
|
llama_model_load_internal: offloaded 10/35 layers to GPU
|
|
llama_model_load_internal: total VRAM used: 1598 MB
|
|
...................................................................................................
|
|
llama_init_from_file: kv self size = 512.00 MB
|
|
```
|
|
|
|
#### Model configuration
|
|
|
|
Depending on the model architecture and backend used, there might be different ways to enable GPU acceleration. It is required to configure the model you intend to use with a YAML config file. For example, for `llama.cpp` workloads a configuration file might look like this (where `gpu_layers` is the number of layers to offload to the GPU):
|
|
|
|
```yaml
|
|
name: my-model-name
|
|
# Default model parameters
|
|
parameters:
|
|
# Relative to the models path
|
|
model: llama.cpp-model.ggmlv3.q5_K_M.bin
|
|
|
|
context_size: 1024
|
|
threads: 1
|
|
|
|
f16: true # enable with GPU acceleration
|
|
gpu_layers: 22 # GPU Layers (only used when built with cublas)
|
|
|
|
```
|
|
|
|
For diffusers instead, it might look like this instead:
|
|
|
|
```yaml
|
|
name: stablediffusion
|
|
parameters:
|
|
model: toonyou_beta6.safetensors
|
|
backend: diffusers
|
|
step: 30
|
|
f16: true
|
|
diffusers:
|
|
pipeline_type: StableDiffusionPipeline
|
|
cuda: true
|
|
enable_parameters: "negative_prompt,num_inference_steps,clip_skip"
|
|
scheduler_type: "k_dpmpp_sde"
|
|
``` |