k3s/vendor/gonum.org/v1/gonum/mat/lq.go

270 lines
7.4 KiB
Go
Raw Normal View History

2019-08-30 18:33:25 +00:00
// Copyright ©2013 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack"
"gonum.org/v1/gonum/lapack/lapack64"
)
const badLQ = "mat: invalid LQ factorization"
// LQ is a type for creating and using the LQ factorization of a matrix.
type LQ struct {
lq *Dense
tau []float64
cond float64
}
func (lq *LQ) updateCond(norm lapack.MatrixNorm) {
// Since A = L*Q, and Q is orthogonal, we get for the condition number κ
2020-03-26 21:07:15 +00:00
// κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Qᵀ * L^-1|
2019-08-30 18:33:25 +00:00
// = |L| |L^-1| = κ(L),
2020-03-26 21:07:15 +00:00
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
2019-08-30 18:33:25 +00:00
// the matrix norm is invariant under orthogonal transformations which
// is not the case for CondNorm. Hopefully the error is negligible: κ
// is only a qualitative measure anyway.
m := lq.lq.mat.Rows
work := getFloats(3*m, false)
iwork := getInts(m, false)
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(norm, l.mat, work, iwork)
lq.cond = 1 / v
putFloats(work)
putInts(iwork)
}
2020-03-26 21:07:15 +00:00
// Factorize computes the LQ factorization of an m×n matrix a where m <= n. The LQ
2019-08-30 18:33:25 +00:00
// factorization always exists even if A is singular.
//
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
2020-03-26 21:07:15 +00:00
// The matrix Q is an orthonormal n×n matrix, and L is an m×n lower triangular matrix.
// L and Q can be extracted using the LTo and QTo methods.
2019-08-30 18:33:25 +00:00
func (lq *LQ) Factorize(a Matrix) {
lq.factorize(a, CondNorm)
}
func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) {
m, n := a.Dims()
if m > n {
panic(ErrShape)
}
k := min(m, n)
if lq.lq == nil {
lq.lq = &Dense{}
}
2020-03-26 21:07:15 +00:00
lq.lq.CloneFrom(a)
2019-08-30 18:33:25 +00:00
work := []float64{0}
lq.tau = make([]float64, k)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
putFloats(work)
lq.updateCond(norm)
}
// isValid returns whether the receiver contains a factorization.
func (lq *LQ) isValid() bool {
2020-03-26 21:07:15 +00:00
return lq.lq != nil && !lq.lq.IsEmpty()
2019-08-30 18:33:25 +00:00
}
// Cond returns the condition number for the factorized matrix.
// Cond will panic if the receiver does not contain a factorization.
func (lq *LQ) Cond() float64 {
if !lq.isValid() {
panic(badLQ)
}
return lq.cond
}
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
// and upper triangular matrices.
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
2020-03-26 21:07:15 +00:00
//
// If dst is empty, LTo will resize dst to be r×c. When dst is
// non-empty, LTo will panic if dst is not r×c. LTo will also panic
// if the receiver does not contain a successful factorization.
func (lq *LQ) LTo(dst *Dense) {
2019-08-30 18:33:25 +00:00
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
2020-03-26 21:07:15 +00:00
if dst.IsEmpty() {
dst.ReuseAs(r, c)
2019-08-30 18:33:25 +00:00
} else {
2020-03-26 21:07:15 +00:00
r2, c2 := dst.Dims()
if r != r2 || c != c2 {
panic(ErrShape)
}
2019-08-30 18:33:25 +00:00
}
// Disguise the LQ as a lower triangular.
t := &TriDense{
mat: blas64.Triangular{
N: r,
Stride: lq.lq.mat.Stride,
Data: lq.lq.mat.Data,
Uplo: blas.Lower,
Diag: blas.NonUnit,
},
cap: lq.lq.capCols,
}
dst.Copy(t)
if r == c {
2020-03-26 21:07:15 +00:00
return
2019-08-30 18:33:25 +00:00
}
// Zero right of the triangular.
for i := 0; i < r; i++ {
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
}
}
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
2020-03-26 21:07:15 +00:00
//
// If dst is empty, QTo will resize dst to be c×c. When dst is
// non-empty, QTo will panic if dst is not c×c. QTo will also panic
// if the receiver does not contain a successful factorization.
func (lq *LQ) QTo(dst *Dense) {
2019-08-30 18:33:25 +00:00
if !lq.isValid() {
panic(badLQ)
}
_, c := lq.lq.Dims()
2020-03-26 21:07:15 +00:00
if dst.IsEmpty() {
dst.ReuseAs(c, c)
2019-08-30 18:33:25 +00:00
} else {
2020-03-26 21:07:15 +00:00
r2, c2 := dst.Dims()
if c != r2 || c != c2 {
panic(ErrShape)
}
dst.Zero()
2019-08-30 18:33:25 +00:00
}
q := dst.mat
// Set Q = I.
ldq := q.Stride
for i := 0; i < c; i++ {
q.Data[i*ldq+i] = 1
}
// Construct Q from the elementary reflectors.
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
putFloats(work)
}
// SolveTo finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
// form. If A is singular or near-singular a Condition error is returned.
// See the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find the minimum norm solution of A * X = B.
// If trans == true, find X such that ||A*X - B||_2 is minimized.
// The solution matrix, X, is stored in place into dst.
// SolveTo will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
br, bc := b.Dims()
// The LQ solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into x at the end.
if trans {
if c != br {
panic(ErrShape)
}
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(r, bc)
2019-08-30 18:33:25 +00:00
} else {
if r != br {
panic(ErrShape)
}
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(c, bc)
2019-08-30 18:33:25 +00:00
}
// Do not need to worry about overlap between x and b because w has its own
// independent storage.
w := getWorkspace(max(r, c), bc, false)
w.Copy(b)
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
if trans {
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloats(work)
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
} else {
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
if !ok {
return Condition(math.Inf(1))
}
for i := r; i < c; i++ {
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
}
work := []float64{0}
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1)
work = getFloats(int(work[0]), false)
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work))
putFloats(work)
}
// x was set above to be the correct size for the result.
dst.Copy(w)
putWorkspace(w)
if lq.cond > ConditionTolerance {
return Condition(lq.cond)
}
return nil
}
// SolveVecTo finds a minimum-norm solution to a system of linear equations.
// See LQ.SolveTo for the full documentation.
// SolveToVec will panic if the receiver does not contain a factorization.
func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
if !lq.isValid() {
panic(badLQ)
}
r, c := lq.lq.Dims()
if _, bc := b.Dims(); bc != 1 {
panic(ErrShape)
}
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the VecDenses as Dense and call the matrix code.
bm := Matrix(b)
if rv, ok := b.(RawVectorer); ok {
bmat := rv.RawVector()
if dst != b {
dst.checkOverlap(bmat)
}
b := VecDense{mat: bmat}
bm = b.asDense()
}
if trans {
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(r)
2019-08-30 18:33:25 +00:00
} else {
2020-03-26 21:07:15 +00:00
dst.reuseAsNonZeroed(c)
2019-08-30 18:33:25 +00:00
}
return lq.SolveTo(dst.asDense(), trans, bm)
}