mirror of
https://github.com/k3s-io/k3s.git
synced 2024-06-07 19:41:36 +00:00
270 lines
7.4 KiB
Go
270 lines
7.4 KiB
Go
// Copyright ©2013 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package mat
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/lapack"
|
||
"gonum.org/v1/gonum/lapack/lapack64"
|
||
)
|
||
|
||
const badLQ = "mat: invalid LQ factorization"
|
||
|
||
// LQ is a type for creating and using the LQ factorization of a matrix.
|
||
type LQ struct {
|
||
lq *Dense
|
||
tau []float64
|
||
cond float64
|
||
}
|
||
|
||
func (lq *LQ) updateCond(norm lapack.MatrixNorm) {
|
||
// Since A = L*Q, and Q is orthogonal, we get for the condition number κ
|
||
// κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Qᵀ * L^-1|
|
||
// = |L| |L^-1| = κ(L),
|
||
// where we used that fact that Q^-1 = Qᵀ. However, this assumes that
|
||
// the matrix norm is invariant under orthogonal transformations which
|
||
// is not the case for CondNorm. Hopefully the error is negligible: κ
|
||
// is only a qualitative measure anyway.
|
||
m := lq.lq.mat.Rows
|
||
work := getFloats(3*m, false)
|
||
iwork := getInts(m, false)
|
||
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
|
||
v := lapack64.Trcon(norm, l.mat, work, iwork)
|
||
lq.cond = 1 / v
|
||
putFloats(work)
|
||
putInts(iwork)
|
||
}
|
||
|
||
// Factorize computes the LQ factorization of an m×n matrix a where m <= n. The LQ
|
||
// factorization always exists even if A is singular.
|
||
//
|
||
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
|
||
// The matrix Q is an orthonormal n×n matrix, and L is an m×n lower triangular matrix.
|
||
// L and Q can be extracted using the LTo and QTo methods.
|
||
func (lq *LQ) Factorize(a Matrix) {
|
||
lq.factorize(a, CondNorm)
|
||
}
|
||
|
||
func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) {
|
||
m, n := a.Dims()
|
||
if m > n {
|
||
panic(ErrShape)
|
||
}
|
||
k := min(m, n)
|
||
if lq.lq == nil {
|
||
lq.lq = &Dense{}
|
||
}
|
||
lq.lq.CloneFrom(a)
|
||
work := []float64{0}
|
||
lq.tau = make([]float64, k)
|
||
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
|
||
work = getFloats(int(work[0]), false)
|
||
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
|
||
putFloats(work)
|
||
lq.updateCond(norm)
|
||
}
|
||
|
||
// isValid returns whether the receiver contains a factorization.
|
||
func (lq *LQ) isValid() bool {
|
||
return lq.lq != nil && !lq.lq.IsEmpty()
|
||
}
|
||
|
||
// Cond returns the condition number for the factorized matrix.
|
||
// Cond will panic if the receiver does not contain a factorization.
|
||
func (lq *LQ) Cond() float64 {
|
||
if !lq.isValid() {
|
||
panic(badLQ)
|
||
}
|
||
return lq.cond
|
||
}
|
||
|
||
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
|
||
// and upper triangular matrices.
|
||
|
||
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
|
||
//
|
||
// If dst is empty, LTo will resize dst to be r×c. When dst is
|
||
// non-empty, LTo will panic if dst is not r×c. LTo will also panic
|
||
// if the receiver does not contain a successful factorization.
|
||
func (lq *LQ) LTo(dst *Dense) {
|
||
if !lq.isValid() {
|
||
panic(badLQ)
|
||
}
|
||
|
||
r, c := lq.lq.Dims()
|
||
if dst.IsEmpty() {
|
||
dst.ReuseAs(r, c)
|
||
} else {
|
||
r2, c2 := dst.Dims()
|
||
if r != r2 || c != c2 {
|
||
panic(ErrShape)
|
||
}
|
||
}
|
||
|
||
// Disguise the LQ as a lower triangular.
|
||
t := &TriDense{
|
||
mat: blas64.Triangular{
|
||
N: r,
|
||
Stride: lq.lq.mat.Stride,
|
||
Data: lq.lq.mat.Data,
|
||
Uplo: blas.Lower,
|
||
Diag: blas.NonUnit,
|
||
},
|
||
cap: lq.lq.capCols,
|
||
}
|
||
dst.Copy(t)
|
||
|
||
if r == c {
|
||
return
|
||
}
|
||
// Zero right of the triangular.
|
||
for i := 0; i < r; i++ {
|
||
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
|
||
}
|
||
}
|
||
|
||
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
|
||
//
|
||
// If dst is empty, QTo will resize dst to be c×c. When dst is
|
||
// non-empty, QTo will panic if dst is not c×c. QTo will also panic
|
||
// if the receiver does not contain a successful factorization.
|
||
func (lq *LQ) QTo(dst *Dense) {
|
||
if !lq.isValid() {
|
||
panic(badLQ)
|
||
}
|
||
|
||
_, c := lq.lq.Dims()
|
||
if dst.IsEmpty() {
|
||
dst.ReuseAs(c, c)
|
||
} else {
|
||
r2, c2 := dst.Dims()
|
||
if c != r2 || c != c2 {
|
||
panic(ErrShape)
|
||
}
|
||
dst.Zero()
|
||
}
|
||
q := dst.mat
|
||
|
||
// Set Q = I.
|
||
ldq := q.Stride
|
||
for i := 0; i < c; i++ {
|
||
q.Data[i*ldq+i] = 1
|
||
}
|
||
|
||
// Construct Q from the elementary reflectors.
|
||
work := []float64{0}
|
||
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
|
||
work = getFloats(int(work[0]), false)
|
||
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
|
||
putFloats(work)
|
||
}
|
||
|
||
// SolveTo finds a minimum-norm solution to a system of linear equations defined
|
||
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
|
||
// form. If A is singular or near-singular a Condition error is returned.
|
||
// See the documentation for Condition for more information.
|
||
//
|
||
// The minimization problem solved depends on the input parameters.
|
||
// If trans == false, find the minimum norm solution of A * X = B.
|
||
// If trans == true, find X such that ||A*X - B||_2 is minimized.
|
||
// The solution matrix, X, is stored in place into dst.
|
||
// SolveTo will panic if the receiver does not contain a factorization.
|
||
func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error {
|
||
if !lq.isValid() {
|
||
panic(badLQ)
|
||
}
|
||
|
||
r, c := lq.lq.Dims()
|
||
br, bc := b.Dims()
|
||
|
||
// The LQ solve algorithm stores the result in-place into the right hand side.
|
||
// The storage for the answer must be large enough to hold both b and x.
|
||
// However, this method's receiver must be the size of x. Copy b, and then
|
||
// copy the result into x at the end.
|
||
if trans {
|
||
if c != br {
|
||
panic(ErrShape)
|
||
}
|
||
dst.reuseAsNonZeroed(r, bc)
|
||
} else {
|
||
if r != br {
|
||
panic(ErrShape)
|
||
}
|
||
dst.reuseAsNonZeroed(c, bc)
|
||
}
|
||
// Do not need to worry about overlap between x and b because w has its own
|
||
// independent storage.
|
||
w := getWorkspace(max(r, c), bc, false)
|
||
w.Copy(b)
|
||
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
|
||
if trans {
|
||
work := []float64{0}
|
||
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1)
|
||
work = getFloats(int(work[0]), false)
|
||
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work))
|
||
putFloats(work)
|
||
|
||
ok := lapack64.Trtrs(blas.Trans, t, w.mat)
|
||
if !ok {
|
||
return Condition(math.Inf(1))
|
||
}
|
||
} else {
|
||
ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
|
||
if !ok {
|
||
return Condition(math.Inf(1))
|
||
}
|
||
for i := r; i < c; i++ {
|
||
zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
|
||
}
|
||
work := []float64{0}
|
||
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1)
|
||
work = getFloats(int(work[0]), false)
|
||
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work))
|
||
putFloats(work)
|
||
}
|
||
// x was set above to be the correct size for the result.
|
||
dst.Copy(w)
|
||
putWorkspace(w)
|
||
if lq.cond > ConditionTolerance {
|
||
return Condition(lq.cond)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// SolveVecTo finds a minimum-norm solution to a system of linear equations.
|
||
// See LQ.SolveTo for the full documentation.
|
||
// SolveToVec will panic if the receiver does not contain a factorization.
|
||
func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
|
||
if !lq.isValid() {
|
||
panic(badLQ)
|
||
}
|
||
|
||
r, c := lq.lq.Dims()
|
||
if _, bc := b.Dims(); bc != 1 {
|
||
panic(ErrShape)
|
||
}
|
||
|
||
// The Solve implementation is non-trivial, so rather than duplicate the code,
|
||
// instead recast the VecDenses as Dense and call the matrix code.
|
||
bm := Matrix(b)
|
||
if rv, ok := b.(RawVectorer); ok {
|
||
bmat := rv.RawVector()
|
||
if dst != b {
|
||
dst.checkOverlap(bmat)
|
||
}
|
||
b := VecDense{mat: bmat}
|
||
bm = b.asDense()
|
||
}
|
||
if trans {
|
||
dst.reuseAsNonZeroed(r)
|
||
} else {
|
||
dst.reuseAsNonZeroed(c)
|
||
}
|
||
return lq.SolveTo(dst.asDense(), trans, bm)
|
||
}
|