stable-diffusion-webui/extensions-builtin/Lora/network_oft.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

112 lines
4.9 KiB
Python
Raw Normal View History

2023-10-18 06:35:50 +00:00
import torch
import network
2024-02-07 12:49:17 +00:00
from lyco_helpers import factorization, butterfly_factor
from einops import rearrange
2023-10-18 06:35:50 +00:00
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
2023-10-18 06:35:50 +00:00
return NetworkModuleOFT(net, weights)
return None
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
2023-10-18 06:35:50 +00:00
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
2023-10-18 11:16:01 +00:00
2023-10-18 06:35:50 +00:00
super().__init__(net, weights)
self.lin_module = None
2023-11-04 00:52:55 +00:00
self.org_module: list[torch.Module] = [self.sd_module]
self.scale = 1.0
# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
self.alpha = weights.w["alpha"] # alpha is constraint
self.dim = self.oft_blocks.shape[0] # lora dim
# LyCORIS
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
2024-02-07 12:49:17 +00:00
self.is_boft = False
if "boft" in weights.w.keys():
self.is_boft = True
self.boft_b = weights.w["boft_b"]
self.boft_m = weights.w["boft_m"]
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
if is_linear:
2023-10-18 06:35:50 +00:00
self.out_dim = self.sd_module.out_features
elif is_conv:
2023-10-18 06:35:50 +00:00
self.out_dim = self.sd_module.out_channels
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
if self.is_kohya:
self.constraint = self.alpha * self.out_dim
self.num_blocks = self.dim
self.block_size = self.out_dim // self.dim
2024-02-07 12:51:22 +00:00
elif self.is_boft:
self.constraint = None
self.block_size, self.block_num = butterfly_factor(self.out_dim, self.dim)
else:
self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
2023-12-13 17:38:32 +00:00
def calc_updown(self, orig_weight):
2024-01-05 08:31:48 +00:00
oft_blocks = self.oft_blocks.to(orig_weight.device)
eye = torch.eye(self.block_size, device=oft_blocks.device)
2023-12-13 17:38:32 +00:00
if self.is_kohya:
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
2023-12-13 17:38:32 +00:00
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
2023-10-22 15:54:24 +00:00
2024-01-05 08:31:48 +00:00
R = oft_blocks.to(orig_weight.device)
2023-10-18 06:35:50 +00:00
2024-02-07 12:49:17 +00:00
if not self.is_boft:
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
else:
scale = 1.0
m = self.boft_m.to(device=oft_blocks.device, dtype=oft_blocks.dtype)
b = self.boft_b.to(device=oft_blocks.device, dtype=oft_blocks.dtype)
r_b = b // 2
inp = orig_weight
for i in range(m):
bi = R[i] # b_num, b_size, b_size
if i == 0:
# Apply multiplier/scale and rescale into first weight
bi = bi * scale + (1 - scale) * eye
#if self.rescaled:
# bi = bi * self.rescale
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)
inp = rearrange(inp, "(d b) ... -> d b ...", b=b)
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)
inp = rearrange(inp, "d b ... -> (d b) ...")
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)
merged_weight = inp
2023-10-18 06:35:50 +00:00
2024-01-05 08:31:48 +00:00
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape
2023-10-18 06:35:50 +00:00
return self.finalize_updown(updown, orig_weight, output_shape)