mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-06-07 21:20:49 +00:00
60 lines
2.8 KiB
Python
60 lines
2.8 KiB
Python
from modules import shared
|
|
from modules.sd_hijack_utils import CondFunc
|
|
|
|
has_ipex = False
|
|
try:
|
|
import torch
|
|
import intel_extension_for_pytorch as ipex # noqa: F401
|
|
has_ipex = True
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def check_for_xpu():
|
|
return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
|
|
|
|
|
|
def get_xpu_device_string():
|
|
if shared.cmd_opts.device_id is not None:
|
|
return f"xpu:{shared.cmd_opts.device_id}"
|
|
return "xpu"
|
|
|
|
|
|
def torch_xpu_gc():
|
|
with torch.xpu.device(get_xpu_device_string()):
|
|
torch.xpu.empty_cache()
|
|
|
|
|
|
has_xpu = check_for_xpu()
|
|
|
|
if has_xpu:
|
|
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
|
|
CondFunc('torch.Generator',
|
|
lambda orig_func, device=None: torch.xpu.Generator(device),
|
|
lambda orig_func, device=None: device is not None and device.type == "xpu")
|
|
|
|
# W/A for some OPs that could not handle different input dtypes
|
|
CondFunc('torch.nn.functional.layer_norm',
|
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
|
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
|
weight is not None and input.dtype != weight.data.dtype)
|
|
CondFunc('torch.nn.modules.GroupNorm.forward',
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
|
CondFunc('torch.nn.modules.linear.Linear.forward',
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
|
CondFunc('torch.nn.modules.conv.Conv2d.forward',
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
|
CondFunc('torch.bmm',
|
|
lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out),
|
|
lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype)
|
|
CondFunc('torch.cat',
|
|
lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
|
|
lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
|
|
CondFunc('torch.nn.functional.scaled_dot_product_attention',
|
|
lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: orig_func(query, key.to(query.dtype), value.to(query.dtype), attn_mask, dropout_p, is_causal),
|
|
lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: query.dtype != key.dtype or query.dtype != value.dtype)
|